Spaces of type H +C
Annales de l'Institut Fourier, Volume 25 (1975) no. 1, p. 99-125

A simple theorem is proved which states a sufficient condition for the sum ot two closed subspaces of a Banach space to be closed. This leads to several analogues of Sarason’s theorem which states that H +C is a closed subalgebra of L . In these analogues, the unit circle is replaces by other groups, and the unit disc is replaced by polydiscs or by balls in spaces of several complex variables. Sums of closed ideals in Banach algebras are also studied.

On démontre un théorème facile concernant une condition suffisante pour que la somme de deux sous-espaces fermés d’un espace de Banach soit fermée. Ce théorème conduit à plusieurs résultats du type du théorème de Sarason, qui dit que H +C est une sous-algèbre fermée de L . Dans ces résultats, le cercle est remplacé par d’autres groupes, et au lieu du disque unité on considère les polydisques et boules dans les espaces de plusieurs variables complexes. Les sommes des idéaux fermés dans une algèbre de Banach sont aussi étudiés.

@article{AIF_1975__25_1_99_0,
     author = {Rudin, Walter},
     title = {Spaces of type $H^\infty +C$},
     journal = {Annales de l'Institut Fourier},
     publisher = {Imprimerie Louis-Jean},
     address = {Gap},
     volume = {25},
     number = {1},
     year = {1975},
     pages = {99-125},
     doi = {10.5802/aif.545},
     zbl = {0295.46080},
     mrnumber = {51 \#13692},
     language = {en},
     url = {http://www.numdam.org/item/AIF_1975__25_1_99_0}
}
Rudin, Walter. Spaces of type $H^\infty +C$. Annales de l'Institut Fourier, Volume 25 (1975) no. 1, pp. 99-125. doi : 10.5802/aif.545. http://www.numdam.org/item/AIF_1975__25_1_99_0/

[1] L. Bungart, Boundary kernel functions for domains on complex manifolds, Pacific J. Math., 14 (1960), 1151-1164. | MR 30 #4976 | Zbl 0144.08001

[2] F. Combes, Sur les faces d'une C*-algèbre, Bull. Sci. Math., 93 (1969), 37-62. | MR 42 #856 | Zbl 0177.17801

[3] A.M. Davie, T.W. Gamelin, and J. Garnett, Distance estimates and pointwise bounded density, Trans. Amer. Math. Soc., 175 (1973), 37-68. | MR 47 #2068 | Zbl 0263.30033

[4] A. Devinatz, An extension of a limit theorem of G. Szegö, J. Math. Anal. Appl., 14 (1966), 499-510. | MR 33 #7792 | Zbl 0139.07301

[5] J. Dixmier, Les C*-algèbres et leurs Représentations, Gauthier-Villars, Paris, 1969. | MR 39 #7442 | Zbl 0174.18601

[6] F. Forelli, Measures whose Poisson integrals are pluriharmonic, Illinois J. Math., 18 (1974), 373-388. | MR 49 #7468 | Zbl 0296.31014

[7] H. Helson and D. Lowdenslager, Prediction theory and Fourier series in several variables, Acta Math., 99 (1958), 165-202. | MR 20 #4155 | Zbl 0082.28201

[8] H. Helson and D. Sarason, Past and future, Math. Scand., 21 (1967), 5-16. | MR 38 #5282 | Zbl 0241.60029

[9] G.M. Henkin, Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications, Math. USSR Sbornik, 7 (1969), 597-616. (Mat. Sbornik 78 (1969)). | Zbl 0208.35102

[10] E. Hewitt and K.A. Ross, Abstract Harmonic Analysis, Springer Verlag, Berlin ; Vol. 1, 1963 ; Vol. 2, 1970.

[11] A. Koranyi, Harmonic functions on hermitian hyperbolic space, Trans. Amer. Math. Soc., 135 (1969), 507-516. | MR 43 #3480 | Zbl 0174.38801

[12] A. Koranyi and S. Vagi, Singular integrals in homogeneous spaces and some problems of classical analysis, Ann. Scuola Normale Superiore Pisa, 25 (1971), 575-648. | Numdam | MR 57 #3462 | Zbl 0291.43014

[13] J.T. Marti, Introduction to the Theory of Bases, Springer Verlag, 1969. | MR 55 #10994 | Zbl 0191.41301

[14] C.E. Rickart, General Theory of Banach Algebras, Van Nostrand, 1960. | MR 22 #5903 | Zbl 0095.09702

[15] W. Rudin, The closed ideals in an algebra of analytic functions, Can. J. Math., 9 (1957), 426-434. | MR 19,641c | Zbl 0080.31703

[16] W. Rudin, Fourier Analysis on Groups, Interscience, 1962. | MR 27 #2808 | Zbl 0107.09603

[17] W. Rudin, Function Theory in Polydiscs, Benjamin, 1969. | MR 41 #501 | Zbl 0177.34101

[18] D. Sarason, Generalized interpolation in H∞, Trans. Amer. Math. Soc., 127 (1967), 179-203. | MR 34 #8193 | Zbl 0145.39303

[19] D. Sarason, Algebras of functions on the unit circle, Bull. Amer, Math. Soc., 79 (1973), 286-299. | MR 48 #2777 | Zbl 0257.46079

[20] E.M. Stein, Boundary Behavior of Holomorphic Functions of Several Complex Variables, Princeton University Press, 1972. | MR 57 #12890 | Zbl 0242.32005

[21] E.L. Stout, On the multiplicative Cousin problem with bounded data, Ann. Scuola Normale Superiore Pisa, 27 (1973), 1-17. | Numdam | MR 51 #3524 | Zbl 0261.32008

[22] J. Wichmann, Bounded approximate units and bounded approximate identities, Proc. Amer. Math. Soc., 41 (1973), 547-550. | MR 48 #2767 | Zbl 0272.46028

[23] L. Zalcman, Bounded analytic functions on domains of infinite connectivity, Trans. Amer. Math. Soc., 144 (1969), 241-269. | MR 40 #5884 | Zbl 0188.45002

[24] A. Zygmund, Sur un théorème de M. Fekete, Bull. Acad. Polonaise, (1927), 343-347. | JFM 53.0256.02

[25] A. Zygmund, Trigonometric Series, 2nd Ed., Cambridge University Press, 1959. | Zbl 0085.05601