Every compact set in 𝐂 n is a good compact set
Annales de l'Institut Fourier, Tome 20 (1970) no. 1, p. 493-498
Soit K un compact d’un ouvert V dans C n . On démontre l’existence d’un voisinage U de K qui satisfait la condition suivante : si f est holomorphe sur V et s’il existe une suite des polynomes qui approchent f uniformément sur un voisinage ouvert U f de K, il existe une suite de polynômes qui approchent f uniformément sur U
Let K be an compact subset of an open set V in C n . We show the existence of an open neighborhood U of K satisfying the following condition : if f is holomorphic in V and if there exists a sequence of polynomials which approximate f uniformly in some open neighborhood U f of K, there exists a sequence of polynomial which approximate f uniformly in U.
@article{AIF_1970__20_1_493_0,
     author = {Bj\"ork, Jan Erik},
     title = {Every compact set in ${\bf C}^n$ is a good compact set},
     journal = {Annales de l'Institut Fourier},
     publisher = {Imprimerie Louis-Jean},
     address = {Gap},
     volume = {20},
     number = {1},
     year = {1970},
     pages = {493-498},
     doi = {10.5802/aif.348},
     zbl = {0188.39003},
     mrnumber = {41 \#7154},
     language = {en},
     url = {http://www.numdam.org/item/AIF_1970__20_1_493_0}
}
Björk, Jan Erik. Every compact set in ${\bf C}^n$ is a good compact set. Annales de l'Institut Fourier, Tome 20 (1970) no. 1, pp. 493-498. doi : 10.5802/aif.348. http://www.numdam.org/item/AIF_1970__20_1_493_0/

[1] A. Martineau, Sur les fonctionnelles analytiques et la transformation de Fourier-Borel, J. Analyse Math. 9, 1-164 (1963). | MR 28 #2437 | Zbl 0124.31804

[2] Gunnig-Rossi, Analytic functions of several complex variables, Prentice Hall (1965). | Zbl 0141.08601