Every compact set in is a good compact set
Annales de l'Institut Fourier, Tome 20 (1970) no. 1, pp. 493-498
Let be an compact subset of an open set in . We show the existence of an open neighborhood of satisfying the following condition : if is holomorphic in and if there exists a sequence of polynomials which approximate uniformly in some open neighborhood of , there exists a sequence of polynomial which approximate uniformly in .
Soit un compact d’un ouvert dans . On démontre l’existence d’un voisinage de qui satisfait la condition suivante : si est holomorphe sur et s’il existe une suite des polynomes qui approchent uniformément sur un voisinage ouvert de , il existe une suite de polynômes qui approchent uniformément sur
@article{AIF_1970__20_1_493_0,
author = {Bj\"ork, Jan Erik},
title = {Every compact set in ${\bf C}^n$ is a good compact set},
journal = {Annales de l'Institut Fourier},
pages = {493--498},
year = {1970},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {20},
number = {1},
doi = {10.5802/aif.348},
mrnumber = {41 #7154},
zbl = {0188.39003},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.348/}
}
TY - JOUR
AU - Björk, Jan Erik
TI - Every compact set in ${\bf C}^n$ is a good compact set
JO - Annales de l'Institut Fourier
PY - 1970
SP - 493
EP - 498
VL - 20
IS - 1
PB - Institut Fourier
PP - Grenoble
UR - https://www.numdam.org/articles/10.5802/aif.348/
DO - 10.5802/aif.348
LA - en
ID - AIF_1970__20_1_493_0
ER -
Björk, Jan Erik. Every compact set in ${\bf C}^n$ is a good compact set. Annales de l'Institut Fourier, Tome 20 (1970) no. 1, pp. 493-498. doi: 10.5802/aif.348





