We give an example of two quotients of a group algebra which are not isomorphic but whose specters are two symmetric compact sets of the line with the same arithmetical properties.
Les algèbres de restrictions des transformées de Fourier des fonctions intégrables à deux ensembles symétriques et arithmétiquement équivalents ne sont pas toujours isomorphes.
@article{AIF_1969__19_1_117_0, author = {Meyer, Yves}, title = {Alg\`ebres de restrictions non isomorphes}, journal = {Annales de l'Institut Fourier}, pages = {117--124}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {19}, number = {1}, year = {1969}, doi = {10.5802/aif.310}, mrnumber = {40 #7731}, zbl = {0179.46402}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/aif.310/} }
Meyer, Yves. Algèbres de restrictions non isomorphes. Annales de l'Institut Fourier, Volume 19 (1969) no. 1, pp. 117-124. doi : 10.5802/aif.310. http://www.numdam.org/articles/10.5802/aif.310/
[1] Fourier-Stieltjes transforms with bounded powers, Math. Scand. 1, 120-126 (1953). | EuDML | MR | Zbl
et ,[2] On certain homomorphisms of quotients of group algebras, Israël J. Math. 2, 120-126 (1964). | MR | Zbl
et ,[3] On sets of multiplicity for trigonometrical series, Amer. J. Math., 64, 531-538 (1942). | MR | Zbl
,[4] Doctoral dissertation, Stanford University (1968).
,[5] Séminaire Bourbaki de Février 1968, Problème de l'unicité, de la synthèse et des isomorphismes en analyse harmonique. | Numdam | Zbl
Cited by Sources: