p -spaces of harmonic functions
Annales de l'Institut Fourier, Volume 17 (1967) no. 2, p. 425-469

Sous les hypothèses standard de l’axiomatique Brelot, étude de classes de fonctions harmoniques complexes définies comme les classes de Hardy classiques. Caractérisation comme solutions de problèmes de Dirichlet avec la frontière minimale, les filtres fins, et données-frontière dans L p , pour 1<p+, comme intégrales de mesures complexes finies sur la frontière minimale, pour p=1. Existence presque-partout à la frontière minimale d’une limite fine finie L p . Application à deux théorèmes du type F. et M. Riesz et Phragmen-Lindelöf pour fonctions positives “fortement sous harmoniques”, et à la classification des espaces harmoniques.

@article{AIF_1967__17_2_425_0,
     author = {Lumer-Na\"\i m, Linda},
     title = {${\mathcal {H}}^p$-spaces of harmonic functions},
     journal = {Annales de l'Institut Fourier},
     publisher = {Imprimerie Durand},
     address = {28 - Luisant},
     volume = {17},
     number = {2},
     year = {1967},
     pages = {425-469},
     doi = {10.5802/aif.276},
     zbl = {0153.43102},
     mrnumber = {37 \#1642},
     language = {en},
     url = {http://www.numdam.org/item/AIF_1967__17_2_425_0}
}
Lumer-Naïm, Linda. ${\mathcal {H}}^p$-spaces of harmonic functions. Annales de l'Institut Fourier, Volume 17 (1967) no. 2, pp. 425-469. doi : 10.5802/aif.276. http://www.numdam.org/item/AIF_1967__17_2_425_0/

[1] H. Bauer, Axiomatische Behandlung des Dirichletschen Problems fur elliptische und parabolische Differential gleichungen, Math. Ann., 146 (1962), 1-59. | MR 26 #1612 | Zbl 0107.08003

[2] M. Brelot, Lectures on potential theory, Tata Institute of Fundamental Research, 19 (1960). | MR 22 #9749 | Zbl 0098.06903

[3] M. Brelot, Intégrabilité uniforme. Quelques applications à la théorie du potentiel, Séminaire théorie du Potentiel, Paris, 6 (1961-1962). | Numdam | Zbl 0115.32201

[4] M. Brelot, Axiomatique des fonctions harmoniques, Séminaire Mathématiques Supérieures, Université de Montréal, Eté 1965. | Zbl 0148.10401

[5] J. L. Doob, Probability methods applied to the first boundary value problem, Third Berkeley Symp. on Math. Statistics and Probability, 2 (1954-1955), 49-80. | MR 18,941a | Zbl 0074.09101

[6] J. L. Doob, Conditional Brownian motion and the boundary limits of harmonic functions, Bull. Soc. Math. de France, 85 (1957), 431-458. | Numdam | MR 22 #844 | Zbl 0097.34004

[7] J. L. Doob, A non probabilistic proof of the relative Fatou theorem, Ann. Inst. Fourier, 9 (1959), 295-299. | Numdam | MR 22 #8233 | Zbl 0095.08203

[8] J. L. Doob, Boundary properties of functions with finite Dirichlet integral, Ann. Inst. Fourier, 12 (1962), 573-621. | Numdam | MR 30 #3992 | Zbl 0121.08604

[9] J. L. Doob , Some classical function theory theorems and their modern versions, Colloque de Potentiel, Paris-Orsay, 1964, and Ann. Inst. Fourier, 15. 1 (1965), 113-136. | Numdam | MR 34 #2923 | Zbl 0154.07503

[10] L. Garding and L. Hormander, Strongly subharmonic functions, Math. scand., 15 (1964), 93-96. | Zbl 0146.35403

[11] K. Gowrisankaran, Extreme harmonic functions and boundary value problems, Ann. Inst. Fourier, 13, 2 (1963), 307-356. | Numdam | MR 29 #1350 | Zbl 0134.09503

[12] K. Gowrisankaran, Fatou-Naim-Doob limit theorems in the axiomatic system of Brelot, Ann. Inst. Fourier, 16, 2 (1967). | Numdam | MR 35 #1802 | Zbl 0145.15103

[13] R. M. Hervé, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier, 12 (1962), 415-571. | Numdam | MR 25 #3186 | Zbl 0101.08103

[14] K. Hofmann, Banach spaces of analytic functions, Prentice-Hall (1962). | Zbl 0117.34001

[15] P. A. Lœb, An axiomatic treatment of pairs of elliptic differential equations, Ann. Inst. Fourier, 16, 2 (1967). | Numdam | Zbl 0172.15101

[16] P. A. Lœb and B. Walsh, The equivalence of Harnack's principle and Harnack's inequality in the axiomatic system of Brelot, Ann. Inst. Fourier, 15, 2 (1965), 597-600. | Numdam | MR 32 #7773 | Zbl 0132.33802

[17] P. A. Lœb and B. Walsh, Decomposition of functions and the classification of spaces in axiomatic potential theory, Notices AMS, January 1966, 146.

[18] L. Lumer-Naim, Harmonic product and harmonic boundary for bounded complex-valued harmonic functions, Notices AMS, april 1965, 355.

[19] L. Lumer-Naim, Hp spaces of harmonic functions, Notices AMS, June 1966, 481.

[20] W. A. Luxemburg, Banach function spaces, Thesis, Van Gorcum, Assen, Netherlands. | Zbl 0068.09204

[21] R. S. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc., 49 (1941), 137-172. | JFM 67.0343.03 | MR 2,292h | Zbl 0025.33302

[22] M. Parreau, Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann, Ann. Inst. Fourier, 3 (1951), 103-197. | Numdam | MR 14,263c | Zbl 0047.32004

[23] E. M. Stein and G. Weiss, On the theory of harmonic functions of several variables, I, Acta Math., 103 (1960), 25-62. | MR 22 #12315 | Zbl 0097.28501