Choquet, Gustave
Cardinaux 2-mesurables et cônes faiblement complets
Annales de l'institut Fourier, Tome 17 (1967) no. 2 , p. 383-393
Zbl 0164.43004 | MR 37 #4556 | 8 citations dans Numdam
doi : 10.5802/aif.274
URL stable : http://www.numdam.org/item?id=AIF_1967__17_2_383_0

On caractérise les ensembles I tels que R + (I) soit complet pour σ(R (I) ,R I ) ; plus généralement, on étudie un problème analogue pour un cône de mesures positives sur un espace complètement régulier.

Bibliographie

[1] G. Choquet, Ensembles et cônes convexes faiblement complets, C.R. Acad. Sc., t. 254, Mars 1962, 2123-2125. MR 24 #A2823 | Zbl 0117.33903

[2] L. Gillman et M. Jerison, Rings of continuous functions, Van Nostrand. Zbl 0093.30001

[3] I. Glicksberg, The representation of functionals by integrals, Duke Math. J., 19 (1952), 253-261. MR 14,288d | Zbl 0048.09004

[4] E. Hewitt, Rings of real valued continuous functions I, Trans. Amer. Math. Soc., 64 (1948), 54-99. MR 10,126e | Zbl 0032.28603

[5] E. Hewitt, Linear functionals on spaces of continuous functions, Fund. Math., 37, (1950), 161-189. MR 13,147g | Zbl 0040.06401

[6] J. L. Kelley et I. Namioka, Linear topological spaces, Princeton, (1963). MR 29 #3851 | Zbl 0115.09902

[7] G. W. Mackey, Equivalence of a problem in measure theory to a problem in the theory of vector lattices, Bull. Amer. Math. Soc., 50 (1944), 719-722. MR 6,70b | Zbl 0060.13402

[8] D. Scott, Mesurable cardinals and constructible sets, Bull. Acad. Pol., Vol. 9, (1961), pp. 521-524. MR 26 #1263 | Zbl 0154.00702