De Rham theorems and Neumann decompositions associated with linear partial differential equations
Annales de l'Institut Fourier, Tome 14 (1964) no. 1, p. 1-19
@article{AIF_1964__14_1_1_0,
     author = {Spencer, D. C.},
     title = {De Rham theorems and Neumann decompositions associated with linear partial differential equations},
     journal = {Annales de l'Institut Fourier},
     publisher = {Imprimerie Durand},
     address = {28 - Luisant},
     volume = {14},
     number = {1},
     year = {1964},
     pages = {1-19},
     doi = {10.5802/aif.154},
     zbl = {0131.32001},
     mrnumber = {34 \#5109},
     language = {en},
     url = {http://www.numdam.org/item/AIF_1964__14_1_1_0}
}
Spencer, D. C. De Rham theorems and Neumann decompositions associated with linear partial differential equations. Annales de l'Institut Fourier, Tome 14 (1964) no. 1, pp. 1-19. doi : 10.5802/aif.154. http://www.numdam.org/item/AIF_1964__14_1_1_0/

[1] M. E. Ash, The Neumann problem for multifoliate structure, thesis, Princeton University, (1962) (to appear).

[2] P. E. Conner, The Neumann's problem for differential forms on riemannian manifolds, Memoirs of the Amer. Math. Soc., No. 20 (1956). | MR 17,1197e | Zbl 0070.31404

[3] G. F. D. Duff and D. C. Spencer, Harmonic tensors on riemannian manifolds with boundary, Annals of Math., vol. 45 (1951), pp. 128-156. | Zbl 0049.18901

[4] K. Kodaira and D. C. Spencer, Multifoliate structures, Annals of Math., vol. 74 (1961), pp. 52-100. | MR 26 #5595 | Zbl 0123.16401

[5] J. J. Kohn, a) Solutions of the ATT-Neumann problem on strongly pseudoconvex manifolds, Proc. Nat. Acad. Sci., U.S.A., vol. 47 (1961), pp. 1198-1202. | MR 24 #A3422 | Zbl 0123.07803

J. J. Kohn b) Regularity at the boundary of the ATT-Neumann problem, Proc. Nat. Acad. Sci., U.S.A., vol. 49 (1963), pp. 206-213. | MR 26 #6996 | Zbl 0118.31101

J. J. Kohn c) Harmonic integrals on strongly pseudoconvex manifolds, I, Annals of Math., vol. 78 (1963), pp. 112-148. | MR 27 #2999 | Zbl 0161.09302

J. J. Kohn d) Harmonic integrals on strongly pseudoconvex manifolds, II, Annals of Math. (to appear). | Zbl 0178.11305

[6] C. B. Morrey, A variational method in the theory of harmonic integrals, II, Amer. Journal of Math., vol. 58 (1956), pp. 137-169. | MR 19,408a | Zbl 0070.31402

[7] A Newlander and. L. Nirenberg, Complex analytic coordinates in almost complex manifolds, Annals of Math., vol. 65 (1957), pp. 391-404. | MR 19,577a | Zbl 0079.16102

[8] L. Niremberg, A complex Frobenius theorem, Seminars on analytic functions, Institute for Advances Study, vol. 1 (1957), pp. 172-179.

[9] D. C. Spencer, a) Deformation of structures on manifolds defined by transitive, continuous pseudogroups, I-II, Annals of Math., vol. 76 (1962), pp. 306-445. | MR 27 #6287a | Zbl 0124.38601

D. C. Spencer b) Deformation of structures on manifolds defined by transitive, continuous pseudogroups. Part III : Structures defined by elliptic pseudogroups (to appear). | Zbl 0192.29603

D. C. Spencer c) Harmonic integrals and Neumann problems associated with linear partial differential equations, in Outlines of the joint Soviet-American Symposium on partial differential equations, August, 1963, Novosibirsk, pp. 253-260.