@article{AFST_1986-1987_5_8_3_257_0, author = {Mancini, Giovanni and Mitidieri, Enzo}, title = {Positive solutions of some coercive-anticoercive elliptic systems}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {257--292}, publisher = {Universit\'e Paul Sabatier}, address = {Toulouse}, volume = {Ser. 5, 8}, number = {3}, year = {1986-1987}, zbl = {0661.35032}, mrnumber = {948755}, language = {en}, url = {http://www.numdam.org/item/AFST_1986-1987_5_8_3_257_0/} }
TY - JOUR AU - Mancini, Giovanni AU - Mitidieri, Enzo TI - Positive solutions of some coercive-anticoercive elliptic systems JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1986-1987 DA - 1986-1987/// SP - 257 EP - 292 VL - Ser. 5, 8 IS - 3 PB - Université Paul Sabatier PP - Toulouse UR - http://www.numdam.org/item/AFST_1986-1987_5_8_3_257_0/ UR - https://zbmath.org/?q=an%3A0661.35032 UR - https://www.ams.org/mathscinet-getitem?mr=948755 LA - en ID - AFST_1986-1987_5_8_3_257_0 ER -
Mancini, Giovanni; Mitidieri, Enzo. Positive solutions of some coercive-anticoercive elliptic systems. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 5, Tome 8 (1986-1987) no. 3, pp. 257-292. http://www.numdam.org/item/AFST_1986-1987_5_8_3_257_0/
[1] Dual variational methods in critical point theory and applications, J. Funct. Anal., t. 14, 1973, p. 349-381. | MR 370183 | Zbl 0273.49063
), ).-[2] The mathematical theory of diffusion and reaction in permeable catalyst Vol. I-II. - Clarendom Press, Oxford, 1975. | Zbl 0315.76051
).-[3] Equation de Yamabe sur un ouvert non contractile. Proceedings of the Conference on Variational Methods in Differential Problems, Trieste 1985. | MR 898390 | Zbl 0629.35041
), ).-[4] Elliptic equations with limiting Sobolev exponents : the impact of topology (to appear on Comm. Pure and Appl. Math.). | MR 861481 | Zbl 0601.35043
). -[5] Remarks on the Schroedinger operator with singular complex potentials, J. Math. Pures et Appl., t. 59, 1979, p. 137-151. | MR 539217 | Zbl 0408.35025
), ). -[6] Positive solutions of nonlinear elliptic equations involving critical exponents, Comm. Pure Appl. Math., t. XXXIV, 1983, p. 437-477. | MR 709644 | Zbl 0541.35029
), ).-[7] Stability and bifurcation of steady state solutions for predatorpey equations, Adv. in Appl. Math., t. 3, 1982, p. 288-334. | MR 673245 | Zbl 0505.35047
), ), ). -[8] On the existence and multiplicity of positive solutions of a semilinear elliptic system, Trabalho de Matêmatica n°216, Univ. de Brasilia, October 1985.
). -[9] Positive solutions for superlinear elliptic system without variational structure, Nonlinear Anal. T.M.A., t. 12, 1984, p. 1427-1436. | MR 769404 | Zbl 0524.35049
). -[10] Stable coexistenc states in the Volterra-Lotka competition model with diffusion, S.I.A.M. on Appl. Math., t. 44, 1984, p. 1112-1133. | MR 766192 | Zbl 0562.92012
), ). -[11] On positive solutions of some pairs of differential equations I, Trans. Amer. Math. Soc., t. 284, 1984, p. 729-743. | MR 743741 | Zbl 0524.35056
). -[12] A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pures et Appl., t. 61, 1982, p. 41-63. | MR 664341 | Zbl 0452.35030
), ), ). -[13] A maximum principle for an elliptic system and applications to semilinear problems, S.I.A.M. J. Math. Anal., t. 17, 1986, p. 836-849. | MR 846392 | Zbl 0608.35022
), ). -[14] Simmetry and related properties via the maximum principle, Comm. Math. Phys., t. 68, 1979, p. 209-243. | MR 544879 | Zbl 0425.35020
) - ) - ). -[15] Continuation and comparison methods for some nonlinear elliptic systems (preprint). | MR 907728
).-[16] Standing wave solutions for a system derived from the Fitzhugh-Nagumo equations for nerve conduction, S.I.A.M. J. Math. Anal., t. 17, 1968, p. 74-83. | MR 819214 | Zbl 0593.35043
) - ). -[17] On steady state solutions of a system of reaction diffusion equations from biology, Nonlinear Analysis, t. 6, 1982, p. 523-530. | MR 664014 | Zbl 0488.35039
) - ).-[18] On the existence of positive solutions of semilinear elliptic equations, S.I.A.M. Rev., t. 24, 1982, p. 441-467. | MR 678562 | Zbl 0511.35033
).-[19] The concentration compactness principle in the calculus of variations : The locally compact case, Parts I and II, Ann. Inst. H. Poincaré Anal. Non linéaire, t. 1, 1984, p. 109-145 and 223-284. | Numdam | MR 778970 | Zbl 0541.49009
).-[20]
).-In preparation.[21] Global existence of branches of stationary solutions for a system of reaction diffusion equations from biology, Nonlinear Analysis, t. 5, 1981, p. 487-498. | MR 613057 | Zbl 0471.35031
). -[22] Conformal deformation of a Riemannian metric to constant scalar curvature, J. Diff. Geometry, t. 20, 1984, p. 479-495. | MR 788292 | Zbl 0576.53028
). -[23] A global existence result for elliptic boundary value problem involving limiting nonlinearities, Math. Z., t. 187, 1984, p. 511-517. | MR 760051 | Zbl 0535.35025
). -[24] Symmetry properties in system of semilinear elliptic equations, J. Differential equations, t. 42, 1981, p. 400-413. | MR 639230 | Zbl 0486.35032
).-