On the Ginzburg-Landau and related equations
Séminaire Équations aux dérivées partielles (Polytechnique), (1997-1998), Exposé no. 21, p. 1-13
We describe qualitative behaviour of solutions of the Gross-Pitaevskii equation in 2D in terms of motion of vortices and radiation. To this end we introduce the notion of the intervortex energy. We develop a rather general adiabatic theory of motion of well separated vortices and present the method of effective action which gives a fairly straightforward justification of this theory. Finally we mention briefly two special situations where we are able to obtain rather detailed picture of the vortex dynamics. Our approach is rather general and is applicable to a wide class of evolution nonlinear equation which exhibit localized, stable static solutions. It yields description of general time-dependent solutions in terms of dynamics of those static solutions “glued” together.
@article{SEDP_1997-1998____A21_0,
     author = {Ovchinnikov, Yu N. and Sigal, Israel Michael},
     title = {On the Ginzburg-Landau and related equations},
     journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique)},
     publisher = {Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {1997-1998},
     note = {talk:21},
     pages = {1-13},
     mrnumber = {1660534},
     zbl = {1061.35522},
     language = {en},
     url = {http://www.numdam.org/item/SEDP_1997-1998____A21_0}
}
Ovchinnikov, Yu N.; Sigal, Israel Michael. On the Ginzburg-Landau and related equations. Séminaire Équations aux dérivées partielles (Polytechnique),  (1997-1998), Exposé no. 21, pp. 1-13. http://www.numdam.org/item/SEDP_1997-1998____A21_0/

[1] F. Bethuel, H. Brezis and F. Hélein (1994), Ginzburg-Landau Vortices, Birkhäuser, Basel. | MR 1269538 | Zbl 0802.35142

[2] F. Bethuel and J.C. Saut (1997), Travelling waves for the Gross-Pitrevskii equation, preprint.

[3] S. Chanillo and M. Kiesling (1995), Symmetry of solutions of Ginzburg-Landau equations, Compt. Rend. Acad. Sci. Paris, t. 327, Série I, 1023–1026. | MR 1360565 | Zbl 0843.35004

[4] Y. Chen, C. Elliot and T. Qui (1994), Shooting method for vortex solutions of a complex-valued Ginzburg-Landau equation, Proc. Royal Soc. Edinburgh 124A, 1068-1075. | MR 1313190 | Zbl 0816.34003

[5] J.E. Colliander and R.L. Jerrard (1998), Vortex dynamics for the Ginzburg-Landau-Schrödinger equation, preprint, MSRI. | MR 1623410

[6] J. Creswick and N. Morrison (1980), On the dynamics of quantum vortices, Phys. Lett. A 76, 267. | MR 595647

[7] W. E (1994), Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity, Physica D 77, 383-404. | MR 1297726 | Zbl 0814.34039

[8] P. Fife and L.A. Peletier (1996), On the location of defects in stationary solutions of the Ginzburg-Landau equations on R 2 , Quart. Appl. Math. 54, 85-104. | MR 1373840 | Zbl 0848.35042

[9] J. Fröhlich and M. Struwe (1990), Variational problems on vector bundles, Commun. Math. Phys. 131, 431-464. | MR 1065892 | Zbl 0714.58012

[10] V.L. Ginzburg and L.P. Pitaevskii (1958), On the theory of superfluidity, Sov. Phys. JETP 7, 585. | MR 105929

[11] E.P. Gross (1961), Nuovo Cimento A 20, 454. | MR 128907 | Zbl 0100.42403

[12] E. Gross (1966), Dynamics of interacting bosons, in Physics of Many Particle Systems, ed. E. Meeron, Gordon and Breach, NY, 268.

[13] S. Gustafson (1997a), Stability of vortex solutions of the Ginzburg-Landau heat equation, in PDE’s and their applications (L. Seco et al, eds), Proceeding of Conference in PDE’s, Toronto June 1995. | Zbl 0884.35054

[14] S. Gustafson (1997b), Symmetric solutions of hte Ginzburg-Landau in all dimensions, IMRN, 16, 807-816. | MR 1472346 | Zbl 0883.35041

[15] S. Gustafson and I.M. Sigal (1998), Existence and stability of magnetic vortices. preprint (Toronto).

[16] P. Hagan (1982), Spiral waves in reaction diffusion equations, SIAM J. Applied Math. 42, 762–786. | MR 665385 | Zbl 0507.35007

[17] M. Hervé, R. Hervé (1994), Étude qualitative des solutions réeles d’une équation différentielle liée a l’équation de Ginzburg-Landau, Ann. Inst. Henri Poincaré, Analyse non linéaire 11, 427-440. | Numdam | MR 1287240 | Zbl 0836.34090

[18] S.V. Iordanskii and A.V. Smirnov (1978), JETP Lett. 27, 535.

[19] A. Jaffe and C. Taubes (1980), Vortices and Monopoles, Birkhäuser. | MR 614447 | Zbl 0457.53034

[20] C. Jones, S.J. Putterman and P.M. Roberts (1986), Motion of Bose condensation V, J. Phys. A 19, 2991–3011.

[21] C.A. Jones and P.M. Roberts (1982), J. Phys. A: Math. Gen. 15, 2599–2619.

[22] E.A. Kuznetzov and J.J. Rasmussen (1995), Instability of two dimensional solitons and vortices in defocusing media, Phys. Rev. E 51, 5, 4479–4484.

[23] E.M. Lieb and M. Loss (1994), Symmetry of the Ginzburg-Landau minimizers in a disc, Math. Res. Lett. 1, 701–715. | MR 1306015 | Zbl 0842.49014

[24] F.-H. Lin and J.X. Xin (1998), On the incompressible fluid limit and the vortex motion law of the nonlinear Schrödinger equation, preprint. | MR 1674000 | Zbl 0920.35145

[25] N.S. Manton (1981), A remark on scattering of BPS monopoles, Phys. Letters 110B, N1, 54–56. | MR 647883

[26] P. Mironescu (1995), On the stability of radial solutions of the Ginzburg-Landau equation, J. Funct. Anal. 130, 334–344. | MR 1335384 | Zbl 0839.35011

[27] P. Mironescu (1996), Les minimiseurs locaux pour l’équation de Ginzburg-Landau sont à symmétrie radiale, preprint. | MR 1411048

[28] J. Neu (1990), Vortices in complex scalar fields, Physica D 43, 385–406. | MR 1067918 | Zbl 0711.35024

[29] L. Onsager (1949), Statistical hydrodynamics, Nuovo Cimento V-VI, Suppl. 2, 279. | MR 36116

[30] Yu.N. Ovchinnikov and I.M. Sigal (1997a), Ginzburg-Landau equation I. General discussion, in P.D.E.’s and their Applications (L. Seco et al., eds.), Proceedings of Conference in PDE’s, Toronto, June 1995. | Zbl 0912.35078

[31] Yu.N. Ovchinnikov and I.M. Sigal (1997b), The Ginzburg-Landau equation II. The energy of vortex configurations, preprint.

[32] Yu.N. Ovchinnikov and I.M. Sigal (1998a), The Ginzburg-Landau equation III. Vortex dynamics, Nonlinearity (to appear). | MR 1644389 | Zbl 0990.35122

[33] Yu.N. Ovchinnikov and I.M. Sigal (1998b), Symmetry breaking in the Ginzburg-Landau equation, preprint.

[34] Yu.N. Ovchinnikov and I.M. Sigal (1998c), Long-time behaviour of Ginzburg-Landau vortices, Nonlinearity (to appear). | MR 1644393 | Zbl 0910.35116

[35] Yu.N. Ovchinnikov and I.M. Sigal (1998d), Break up and creation of vorticies, in preparation.

[36] L.M. Pismen (1994), Structure and dynamics of defects in 2D complex vector field, Physica D 73, 244-258. | MR 1277608 | Zbl 0812.58022

[37] L.M. Pismen and A. Nepomnyashchy (1993), Stability of vortex rings in a model of superflow, Physica D 69, 163–171. | MR 1245660 | Zbl 0791.35128

[38] L.P. Pitaevskii (1961), Pis’ma Zh. Eksp. Teor. Fix. 77, 988 (Sov. Phys. JETP 13, 451).

[39] A.S. Schwarz (1993), Topology for physicists, Springer-Verlag. | MR 1301777 | Zbl 0858.55001

[40] I. Shafrir (1994), Remarks on solutions of -Δu=(1-|u| 2 )u in 2 , C.R. Acad. Sci. Paris, t. 318, Série I, 327–331. | MR 1267609 | Zbl 0806.35030

[41] D. Stuart (1994), Comm. Math. Phys. 159, 51. | MR 1257242 | Zbl 0807.35141

[42] G.B. Whitham (1974), Linear and Nonlinear Waves, John Wiley & Sons. | MR 483954 | Zbl 0373.76001