Une interprétation des congruences relatives à la fonction τ de Ramanujan
Séminaire Delange-Pisot-Poitou. Théorie des nombres, Tome 9 (1967-1968) no. 1, Exposé no. 14, p. 1-17
@article{SDPP_1967-1968__9_1_A13_0,
     author = {Serre, Jean-Pierre},
     title = {Une interpr\'etation des congruences relatives \`a la fonction $\tau $ de Ramanujan},
     journal = {S\'eminaire Delange-Pisot-Poitou. Th\'eorie des nombres},
     publisher = {Secr\'etariat math\'ematique},
     volume = {9},
     number = {1},
     year = {1967-1968},
     note = {talk:14},
     pages = {1-17},
     zbl = {0186.36902},
     mrnumber = {244147},
     language = {fr},
     url = {http://www.numdam.org/item/SDPP_1967-1968__9_1_A13_0}
}
Serre, Jean-Pierre. Une interprétation des congruences relatives à la fonction $\tau $ de Ramanujan. Séminaire Delange-Pisot-Poitou. Théorie des nombres, Tome 9 (1967-1968) no. 1, Exposé no. 14, pp. 1-17. http://www.numdam.org/item/SDPP_1967-1968__9_1_A13_0/

[1] Artin (M.) et Grothendieck (A.). - Cohomologie étale des schémas, Séminaire de géométrie algébrique, Institut des Hautes Etudes Scientifiques, Bures-surYvette, 1963/64.

[2] Bambah (R.P.). - Two congruence properties of Ramanujan's function τ(n) , J. London math. Soc., t. 21, 1946, p. 91-93. | Zbl 0060.10204

[3] Davenport (H.) und Hasse (H.). - Die Nullstelle der Kongruenzzetafunktionen in gewissen zyklischen Fällen, J. für reine und angew. Math. [J. Crelle], t. 172, 1935, p. 151-182. | JFM 60.0913.01

[4] Eichler (M.). - Quaternäre quadratische Formen und die Riemannsche Vermutung für die Kongruenzzetafunktion, Archiv der Math., t. 5, 1954, p. 355-366. | MR 63406 | Zbl 0059.03804

[5] Hardy (G.H.). - Ramanujan (Twelve lectures on subjects suggested by his life and his work). - Cambridge University Press, 1940 [Reprint : New York, Chelsea publishing Company, 1959]. | Zbl 0025.10505

[6] Hecke (E. ) . - Mathematische Werke. - Göttingen, Vandenhoeck und Ruprecht, 1959. | MR 104550 | Zbl 0092.00102

[7] Igusa (J.). - Kroneckerian model of fields of elliptic modular functions, Amer. J. of Math., t. 81, 1959, p. 561-577. | MR 108498 | Zbl 0093.04502

[8] Ihara (Y.). - Hecke polynomials as congruence ζ functions in elliptic modular case, Annals of Math., Series 2, t. 85, 1967, p. 267-295. | Zbl 0181.36501

[9] Kuga (M.). - Fiber varieties over a symmetric space whose fibers are abelian varieties [Notes polycopiées], University of Chicago, 1963/64.

[10] Kuga (M.) and Shimura (G.). - On the zeta function of a fibre variety whose fibres are abelian varieties, Annals of Math., Series 2, t. 82, 1965, p. 478-539. | MR 184942 | Zbl 0166.16801

[11] Lehmer (D.H.). - Ramanujan's function τ(n) , Duke math. J., t. 10, 1943, p. 483-492. | Zbl 0060.10402

[12] Lehmer (D.H.). - The vanishing of Ramanujan's function τ(n) , Duke math. J., t. 14, 1947, p. 429-433. | Zbl 0029.34502

[13] Lehmer (D.H.). - Notes on some arithmetical properties of elliptic modular functions [Notes polycopiées, Berkeley, non datées].

[14] Mordell (L.J.). - On Mr Ramanujan's empirical expressions of modular functions, Proc. Cambridge phil. Soc., t. 19, 1917, p. 117-124. | JFM 46.0605.01

[15] Ramanathan (K.G.). - Congruence properties of Ramanujan's function τ(n) , (II), J. Indian math. Soc., t. 9, 1945, p. 55-59. | Zbl 0063.06404

[16] Ramanujan (S.). - On certain arithmetical functions, Trans. Cambridge phil. Soc., t. 22, 1916, p. 159-184.

[17] Serre (J.-P.). - Abelian l-adic representations and elliptic curves. - New York, Benjamin, 1968. | MR 263823 | Zbl 0186.25701

[18] Shimura (G.). - Correspondances modulaires et les fonctions zêtas des courbes algébriques, J. Math. Soc. Japan, t. 10, 1958, p. 1-28. | MR 95173 | Zbl 0081.07603

[19] Shimura (G.). - A reciprocity law in non-solvable extensions, J. für reine und angew. Math. [J. Crelle], t. 221, 1966, p. 209-220. | MR 188198 | Zbl 0144.04204

[20] Weil (A.). - On some exponential sums, Proc. Nat. Acad. Sc. U. S. A., t. 34, 1948, p. 204-207. | MR 27006 | Zbl 0032.26102

[21] Wilton (J.R.). - Congruence properties of Ramanujan's function τ(n) , Proc. London math. Soc., t. 31, 1930, p. 1-10. | JFM 56.0874.02