In this paper, information theoretic methodology for system modeling is applied to investigate the probability density function of the busy period in vacation models operating under the -, - and -policies. The information about the density function is limited to a few mean value constraints (usually the first moments). By using the maximum entropy methodology one obtains the least biased probability density function satisfying the system’s constraints. The analysis of the three controllable queueing models provides a parallel numerical study of the solution obtained via the maximum entropy approach versus “classical” solutions. The maximum entropy analysis of a continuous system descriptor (like the busy period) enriches the current body of literature which, in most cases, reduces to discrete queueing measures (such as the number of customers in the system).
Mots clés : busy period analysis, maximum entropy methodology, vacation models, numerical inversion
@article{RO_2004__38_3_195_0, author = {Artalejo, Jesus R. and Lopez-Herrero, Maria J.}, title = {Entropy maximization and the busy period of some single-server vacation models}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {195--213}, publisher = {EDP-Sciences}, volume = {38}, number = {3}, year = {2004}, doi = {10.1051/ro:2004020}, zbl = {pre02110162}, mrnumber = {2091752}, language = {en}, url = {www.numdam.org/item/RO_2004__38_3_195_0/} }
Artalejo, Jesus R.; Lopez-Herrero, Maria J. Entropy maximization and the busy period of some single-server vacation models. RAIRO - Operations Research - Recherche Opérationnelle, Tome 38 (2004) no. 3, pp. 195-213. doi : 10.1051/ro:2004020. http://www.numdam.org/item/RO_2004__38_3_195_0/
[1] Numerical inversion of Laplace transforms of probability distributions. ORSA J. Comput. 7 (1995) 36-43. | Zbl 0821.65085
and ,[2] G-networks: A versatile approach for work removal in queueing networks. Eur. J. Oper. Res. 126 (2000) 233-249. | Zbl 0971.90007
,[3] On the M/G/1 queue with D-policy. Appl. Math. Modelling 25 (2001) 1055-1069. | Zbl 0991.60087
,[4] On the D-policy for the M/G/1 queue. Manage. Sci. 21 (1975) 1073-1076. | Zbl 0322.60083
and ,[5] Basic Optimization Methods. Edward Arnold, London (1984). | Zbl 0618.90052
,[6] Queueing systems with vacations - A survey. Queue. Syst. 1 (1986) 29-66. | Zbl 0655.60089
,[7] A maximum entropy analysis of the M/G/1 and G/M/1 queueing systems at equilibrium. Acta Inform. 19 (1983) 339-355. | Zbl 0494.60095
and ,[8] Information theoretic approximations for the M/G/1 retrial queue. Acta Inform. 31 (1994) 559-571. | Zbl 0818.68038
, and ,[9] Distributions and first moments of the busy period and idle periods in controllable M/G/1 queueing models with simple and dyadic policies. Stoch. Anal. Appl. 13 (1995) 47-81. | Zbl 0819.60085
, and ,[10] Product-form queueing networks with negative and positive customers. J. Appl. Prob. 28 (1991) 656-663. | Zbl 0741.60091
,[11] G-networks: A unifying model for neural and queueing networks. Ann. Oper. Res. 48 (1994) 433-461. | Zbl 0803.90058
,[12] A queue with server of walking type (autonomous service). Annales de l'Institut Henry Poincaré, Series B 16 (1980) 63-73. | Numdam | Zbl 0433.60086
and ,[13] Maximum entropy condition in queueing theory. J. Opl. Res. Soc. 37 (1986) 293-301. | Zbl 0582.60090
,[14] The T-policy for the M/G/1 queue. Manage. Sci. 23 (1977) 775-778. | Zbl 0357.60022
,[15] Queueing Systems, Volume 1: Theory. John Wiley & Sons, Inc., New York (1975). | Zbl 0334.60045
,[16] Entropy maximisation and queueing networks models. Ann. Oper. Res. 48 (1994) 63-126. | Zbl 0789.90032
,[17] Utilization of idle time in an M/G/1 queueing system. Manage. Sci. 22 (1975) 202-211. | Zbl 0313.60067
and ,[18] A simplex method for function minimization. Comput. J. 7 (1964) 308-313. | Zbl 0229.65053
and ,[19] Numerical Recipes in Fortran, The Art of Scientific Computing. Cambridge University Press (1992). | MR 1196230 | Zbl 0778.65002
, , and ,[20] Information theoretic approximations for M/G/1 and G/G/1 queuing systems. Acta Inform. 17 (1982) 43-61. | Zbl 0456.68038
,[21] Maximum entropy solution to a quorum queueing system. Math. Comput. Modelling 34 (2001) 19-27. | Zbl 0989.60095
and ,[22] Queueing Analysis. Vol. 1-3, North-Holland, Amsterdam (1991).
,[23] Control of the service process in a queueing system. Eur. J. Oper. Res. 23 (1986) 141-158. | Zbl 0583.60092
,[24] A maximum entropy method for inverting Laplace transforms of probability density functions. Biometrika 82 (1995) 887-892. | Zbl 0861.62007
and ,[25] Maximum entropy analysis to the N policy M/G/1 queueing systems with a removable server. Appl. Math. Modelling 26 (2002) 1151-1162. | Zbl pre01878812
, and ,[26] Queueing systems with a removable server station. Oper. Res. Quar. 14 (1963) 393-405.
and ,