The brownian motion model introduced by Dyson [7] for the eigenvalues of unitary random matrices is interpreted as a system of interacting brownian particles on the circle with electrostatic inter-particles repulsion. The aim of this paper is to define the finite particle system in a general setting including collisions between particles. Then, we study the behaviour of this system when the number of particles goes to infinity (through the empirical measure process). We prove that a limiting measure-valued process exists and is the unique solution of a deterministic second-order PDE. The uniform law on is the only limiting distribution of when goes to infinity and has an analytical density.
Mots clés : repulsive particles, multivalued stochastic differential equations, empirical measure process
@article{PS_2001__5__203_0, author = {C\'epa, Emmanuel and L\'epingle, Dominique}, title = {Brownian particles with electrostatic repulsion on the circle : Dyson's model for unitary random matrices revisited}, journal = {ESAIM: Probability and Statistics}, pages = {203--224}, publisher = {EDP-Sciences}, volume = {5}, year = {2001}, zbl = {1002.60093}, language = {en}, url = {http://www.numdam.org/item/PS_2001__5__203_0/} }
Cépa, Emmanuel; Lépingle, Dominique. Brownian particles with electrostatic repulsion on the circle : Dyson's model for unitary random matrices revisited. ESAIM: Probability and Statistics, Tome 5 (2001) , pp. 203-224. http://www.numdam.org/item/PS_2001__5__203_0/
[1] A nonlinear SDE involving Hilbert transform. J. Funct. Anal. 165 (1999) 390-406. | MR 1698948 | Zbl 0935.60095
, , and ,[2] Équations différentielles stochastiques multivoques. Sémin. Probab. XXIX (1995) 86-107. | Numdam | MR 1459451 | Zbl 0833.60079
,[3] Problème de Skorohod multivoque. Ann. Probab. 26 (1998) 500-532. | MR 1626174 | Zbl 0937.34046
,[4] Diffusing particles with electrostatic repulsion. Probab. Theory Related Fields 107 (1997) 429-449. | MR 1440140 | Zbl 0883.60089
and ,[5] The Wigner semi-circle law and eigenvalues of matrix-valued diffusions. Probab. Theory Related Fields 93 (1992) 249-272. | MR 1176727 | Zbl 0767.60050
,[6] The geometry of Brownian curve. Bull. Sci. Math. 2 (1993) 91-106. | MR 1205413 | Zbl 0778.60058
, , and ,[7] A Brownian motion model for the eigenvalues of a random matrix. J. Math. Phys. 3 1191-1198. | MR 148397 | Zbl 0111.32703
,[8] Diffusion processes in one dimension. Trans. Amer. Math. Soc. 77 (1954) 1-31. | MR 63607 | Zbl 0059.11601
,[9] Brownian motion in a Weyl chamber, non-colliding particles, and random matrices. Ann. Inst. H. Poincaré 35 (1999) 177-204. | Numdam | MR 1678525 | Zbl 0937.60075
,[10] Non-colliding Brownian motion on the circle. Bull. London Math. Soc. 28 (1996) 643-650. | MR 1405497 | Zbl 0853.60060
and ,[11] Brownian motion and stochastic calculus. Springer, Berlin Heidelberg New York (1988). | MR 917065 | Zbl 0638.60065
and ,[12] Stochastic differential equations with reflecting boundary conditions. Comm. Pure Appl. Math. 37 (1984) 511-537. | MR 745330 | Zbl 0598.60060
and ,[13] Stochastic integrals. Academic Press, New York (1969). | MR 247684 | Zbl 0191.46603
,[14] Random matrices. Academic Press, New York (1991). | MR 1083764 | Zbl 0780.60014
,[15] Quelques problèmes liés aux systèmes infinis de particules et leurs limites. Sémin. Probab. XX (1986) 426-446. | Numdam | MR 942037 | Zbl 0622.60112
,[16] A diffusion process in a singular mean-drift field. Z. Wahrsch. Verw. Gebiete 68 (1985) 247-269. | MR 771466 | Zbl 0558.60060
and ,[17] On the convergence of diffusion processes conditioned to remain in a bounded region for large times to limiting positive recurrent diffusion processes. Ann. Probab. 13 (1985) 363-378. | MR 781410 | Zbl 0567.60076
,[18] Continuous martingales and Brownian motion. Springer Verlag, Berlin Heidelberg (1991). | MR 1083357 | Zbl 0731.60002
and ,[19] Interacting Brownian particles and the Wigner law. Probab. Theory Related Fields 95 (1993) 555-570. | MR 1217451 | Zbl 0794.60100
and ,[20] Diffusions, Markov processes and Martingales. Wiley and Sons, New York (1987). | MR 921238 | Zbl 0826.60002
and ,[21] Stochastic differential equations for multidimensional domains with reflecting boundary. Probab. Theory Related Fields 74 (1987) 455-477. | MR 873889 | Zbl 0591.60049
,[22] Dyson's model of interacting Brownian motions at arbitrary coupling strength. Markov Process. Related Fields 4 (1998) 649-661. | Zbl 0927.60086
,[23] Topics in propagation of chaos. École d'été Probab. Saint-Flour XIX (1991) 167-251. | Zbl 0732.60114
,[24] Stochastic differential equations with reflecting boundary conditions in convex regions. Hiroshima Math. J. 9 (1979) 163-177. | MR 529332 | Zbl 0423.60055
,[25] Lectures on free probability theory. École d'été Probab. Saint-Flour (1998). | Zbl 1015.46037
,