Contributions of rational homotopy theory to global problems in geometry
Publications Mathématiques de l'IHÉS, Volume 56 (1982), p. 171-177
@article{PMIHES_1982__56__171_0,
     author = {Grove, Karsten and Halperin, Stephen},
     title = {Contributions of rational homotopy theory to global problems in geometry},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     publisher = {Institut des Hautes \'Etudes Scientifiques},
     volume = {56},
     year = {1982},
     pages = {171-177},
     zbl = {0508.55013},
     mrnumber = {84b:58030},
     language = {en},
     url = {http://www.numdam.org/item/PMIHES_1982__56__171_0}
}
Grove, Karsten; Halperin, Stephen. Contributions of rational homotopy theory to global problems in geometry. Publications Mathématiques de l'IHÉS, Volume 56 (1982) pp. 171-177. http://www.numdam.org/item/PMIHES_1982__56__171_0/

[1] I. K. Babenko, On analytic properties of the Poincaré series of loop spaces, Math. Zametki, 27 (1980), 751-765. | MR 81h:55005 | Zbl 0447.55007

[2] J. Barge, Structures différentiables sur les types d'homotopie rationnelle simplement connexes, Ann. Scient. Éc. Norm. Sup., 9 (1976), 469-501. | Numdam | MR 55 #13448 | Zbl 0348.57016

[3] M. Berger, R. Bott, Sur les variétés à courbure strictement positive, Topology, 1 (1962), 301-311. | MR 26 #4296 | Zbl 0112.13604

[4] Y. Felix, S. Halperin, Rational Lusternik-Schnirelmann category and its applications, Trans. Amer. Math. Soc., 273 (1982), 1-37. | MR 84h:55011 | Zbl 0508.55004

[5] Y. Felix, S. Halperin, J. C. Thomas, The homotopy Lie algebra for finite complexes, Publ. Math. I.H.E.S., ce volume, 179-202. | Numdam | MR 85c:55010 | Zbl 0504.55005

[6] Y. Felix, J. C. Thomas, The radius of convergence of Poincaré series of loop spaces, Invent. math., 68 (1982), 257-274. | MR 84f:55007 | Zbl 0476.55016

[7] J. B. Friedlander, S. Halperin, Rational homotopy groups of certain spaces, Invent. math., 53 (1979), 117-133. | MR 81f:55006b | Zbl 0396.55010

[8] M. Gromov, Curvature, diameter and Betti numbers, Comment. Math. Helv., 56 (1981), 179-195. | MR 82k:53062 | Zbl 0467.53021

[9] K. Grove, Condition (C) for the energy integral on certain path-spaces and applications to the theory of geodesics, J. Differential Geometry, 8 (1973), 207-223. | MR 49 #4030 | Zbl 0277.58004

[10] K. Grove, Isometry-invariant Geodesics, Topology, 13 (1974), 281-292. | MR 51 #6877 | Zbl 0289.58007

[11] K. Grove, S. Halperin, M. Vigué-Poirrier, The rational homotopy theory of certain path-spaces with applications to geodesics, Acta math., 140 (1978), 277-303. | MR 80g:58024 | Zbl 0421.58007

[12] K. Grove, M. Tanaka, On the number of invariant closed geodesics, Acta math., 140 (1978), 33-48. | MR 56 #16678 | Zbl 0375.58010

[13] S. Halperin, Finiteness in the minimal model of Sullivan, Trans. Amer. Math. Soc., 230 (1977), 173-199. | MR 57 #1493 | Zbl 0364.55014

[14] S. Halperin, Spaces whose rational homotopy and ψ-homotopy are both finite dimensional, to appear. | Zbl 0546.55015

[15] H. Hernández-Andrade, A class of compact manifolds with positive Ricci curvature, Proc. symp. pure math. A.M.S., XXVII (1975), 73-87. | MR 52 #1565 | Zbl 0325.53041

[16] J. Milnor, Singular points of complex hypersurfaces, Annals of math. studies, 61 (1968), Princeton. | MR 39 #969 | Zbl 0184.48405

[17] S. B. Myers, N. Steenrod, The group of isometries of a Riemannian manifold, Ann. of Math., 40 (1939), 400-416. | JFM 65.1415.03 | Zbl 0021.06303

[18] D. Quillen, Rational homotopy theory, Ann. of Math., 90 (1969), 205-295. | MR 41 #2678 | Zbl 0191.53702

[19] D. Sullivan, Infinitesimal computations in topology, Publ. Math. I.H.E.S., 47 (1978), 269-331. | Numdam | MR 58 #31119 | Zbl 0374.57002

[20] M. Tanaka, On the existence of infinitely many isometry-invariant geodesics, J. Differential Geometry, 17 (1982), 171-184. | MR 83h:53060 | Zbl 0499.53041