Although the intellectual merits of computational modelling across various length and time scales are generally well accepted, good illustrative examples are often lacking. One way to begin appreciating the benefits of the multiscale approach is to first gain experience in probing complex physical phenomena at one scale at a time. Here we discuss materials modelling at two characteristic scales separately, the atomistic level where interactions are specified through classical potentials and the electronic level where interactions are treated quantum mechanically. The former is generally sufficient for dealing with mechanical deformation at large strain, whereas the latter is necessary for treating chemical reactions or electronic transport. We will discuss simulations of defect nucleation using molecular dynamics, the study of water-silica reactions using a tight-binding approach, the design of a semiconductor-oxide interface using density functional theory, and the analysis of conjugated polymer in molecular actuation using Hartree-Fock calculations. The diversity of the problems discussed notwithstanding, our intent is to lay the groundwork for future problems in materials research, a few will be mentioned, where modelling at the electronic and atomistic scales are needed in an integrated fashion. It is in these problems that the full potential of multiscale modelling can be realized.

^{}; Först, Clemens

^{}; Li, Ju

^{}; Lin, Xi

^{}; Zhu, Ting

^{1}; Yip, Sidney

^{}

@article{M2AN_2007__41_2_427_0, author = {Silva, Emilio and F\"orst, Clemens and Li, Ju and Lin, Xi and Zhu, Ting and Yip, Sidney}, title = {Multiscale materials modelling : case studies at the atomistic and electronic structure levels}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {427--445}, publisher = {EDP-Sciences}, volume = {41}, number = {2}, year = {2007}, doi = {10.1051/m2an:2007024}, mrnumber = {2339635}, zbl = {1138.82312}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2007024/} }

TY - JOUR AU - Silva, Emilio AU - Först, Clemens AU - Li, Ju AU - Lin, Xi AU - Zhu, Ting AU - Yip, Sidney TI - Multiscale materials modelling : case studies at the atomistic and electronic structure levels JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2007 SP - 427 EP - 445 VL - 41 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2007024/ DO - 10.1051/m2an:2007024 LA - en ID - M2AN_2007__41_2_427_0 ER -

%0 Journal Article %A Silva, Emilio %A Först, Clemens %A Li, Ju %A Lin, Xi %A Zhu, Ting %A Yip, Sidney %T Multiscale materials modelling : case studies at the atomistic and electronic structure levels %J ESAIM: Modélisation mathématique et analyse numérique %D 2007 %P 427-445 %V 41 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2007024/ %R 10.1051/m2an:2007024 %G en %F M2AN_2007__41_2_427_0

Silva, Emilio; Först, Clemens; Li, Ju; Lin, Xi; Zhu, Ting; Yip, Sidney. Multiscale materials modelling : case studies at the atomistic and electronic structure levels. ESAIM: Modélisation mathématique et analyse numérique, Volume 41 (2007) no. 2, pp. 427-445. doi : 10.1051/m2an:2007024. http://www.numdam.org/articles/10.1051/m2an:2007024/

[1] Small polarons in dry DNA. Phys. Rev. Lett. 91 (2003) 108105.

, , and ,[2] First-principles calculations of strontium on Si(001). Phys. Rev. B 69 (2004) 075309.

, , and ,[3] Transition path sampling: Throwing ropes over rough mountain passes, in the dark. Annu. Rev. Phys. Chem. 53 (2002) 291-318.

, , and ,[4] On the stability of crystal lattices. I. Proc. Cambridge Philos. Soc. 36 (1940) 160. | JFM

,[5] Dynamical Theory of Crystal Lattices. Clarendon, Oxford (1956). | Zbl

and ,[6] Concurrent coupling of length scales: Methodology and application. Phys. Rev. B 60 (1999) 2391-2403.

, , and ,[7] Hyperelasticity governs dynamic fracture at a critical length scale. Nature 426 (2003) 141-146.

, and ,[8] Dislocation core effects on mobility, in Dislocations in Solids, Vol. 12, Chap. 64, F.R.N. Nabarro and J.P. Hirth Eds., Elsevier, Amsterdam (2004) 1-80.

, , , and ,[9] Multi-scale modeling of polycrystal plasticity: A workshop report. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 251 (1998) 1-22.

, , , , , , , , and ,[10] Global scientific and engineering simulations on scalar, vector and parallel lcap-type supercomputers. Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci. 326 (1988) 445-470. | Zbl

,[11] Materials research by means of multiscale computer simulation. Mrs Bull. 26 (2001) 169-175.

and ,[12] W.E and B. Engquist, The heterogeneous multiscale methods. Comm. Math. Sci. 1 (2003) 87-132. | Zbl

[13] W.E and B. Engquist, Multiscale modeling and computation. Notices AMS 50 (2003) 1062-1070. | Zbl

[14] W.N. E, W.Q. Ren and E. Vanden-Eijnden, String method for the study of rare events. Phys. Rev. B 66 (2002) 052301.

[15] The quest for high-conductance DNA. Rev. Mod. Phys. 76 (2004) 195-214.

, and ,[16] The interface between silicon and a high-k oxide. Nature 427 (2004) 53.

, , and ,[17] Structural and electronic properties of the interface between the high-k oxide LaAlO${}_{3}$ and Si(001). Phys. Rev. Lett. 95 (2005) 137602.

, and ,[18] Gaussian 03. Gaussian, Inc. (2003).

et al.[19] Discrete and continuous deformation during nanoindentation of thin films. Acta Mater. 48 (2000) 2277-2295.

, , , and ,[20] Solitons in conducting polymers. Rev. Mod. Phys. 60 (1988) 781-851.

, , and ,[21] Acceleration waves in solids. J. Mech. Phys. Solids 10 (1962) 1-16. | Zbl

,[22] International technology roadmap for semiconductors (2003). Available at http://public.itrs.net/

[23] Nudged elastic band method for finding minimum energy paths of transitions, in Classical and Quantum Dynamics in Condensed Phase Simulations, B.J. Berne, G. Ciccotti and D.F. Coker Eds., World Scientific (1998) 385-404.

, and ,[24] Nudged elastic band method for finding minimum energy paths of transitions, in Classical and Quantum Dynamics in Condensed Phase Simulations, Chap. 16, B.J. Berne, G. Ciccotti and D.F. Coker. Eds., World Scientific (1998) 385-404.

, and ,[25] Modelling and simulation of solids - Editorial overview. Curr. Opin. Solid State Mat. Sci. 3 (1998) 523-525.

and ,[26] Cooling bose-einstein condensates below 500 picokelvin. Science 301 (2003) 1513-1515.

, , , , , , and ,[27] Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418 (2002) 307-310.

, , , and ,[28] Elastic criterion for dislocation nucleation. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 365 (2004) 25-30.

, , , and ,[29] Dislocation modeling and acoustic-emission observation of alternating ductile/brittle events in Fe-3wt% Si crystals. Acta Metall. Mater. 38 (1990) 2435.

, , and ,[30] Controlling bending and twisting of conjugated polymers via solitons. Phys. Rev. Lett. 95 (2005) 198303.

, and ,[31] Polaron-induced conformation change of a single polypyrrole chain: An intrinsic actuation mechanism. Int. J. Quant. Chem. 102 (2005) 980-985.

, , and ,[32] Multiple self-localized electronic states in trans-polyacetylene. Proc. Natl. Acad. Sci. 103 (2006) 8943-8946.

, , and ,[33] Possibility of synthesizing an organic superconductor. Phys. Rev. 134 (1964) A1416-A1424.

,[34] Overview of multiscale simulation of materials, in Handbook of Theoretical and Computational Nanotechnology, Vol. X, M. Rieth and W. Schommers Eds., American Scientific Publ. (2005) 1-33.

and ,[35] From electrons to finite elements: A concurrent multiscale approach for metals. Phys. Rev. B 73 (2006) 024108.

, and ,[36] “Synthetic metals”: A novel role for organic polymers. Rev. Mod. Phys. 73 (2001) 701-712.

,[37] Crystalline oxides on silicon: the first five monolayers. Phys. Rev. Lett. 81 (1998) 3014.

, and ,[38] A molecular interpretation of stress-corrosion in silica. Nature 295 (1982) 511-512.

and ,[39] Structural stability and lattice defects in copper: Ab initio, tight-binding and embedded-atom calculations. Phys. Rev. B 6322 (2001) 224106.

, , , and ,[40] The internal stability of an elastic solid. Philos. Mag. A 80 (2000) 2827-2840.

and ,[41] Ideal shear strain of metals and ceramics. Phys. Rev. B 70 (2004) 104104.

, , , and ,[42] Nanomechanics of defects in solids. Advan. Appl. Mech. 36 (1999) 1-79.

and ,[43] Quantum Theory of Solids. The International series of monographs on physics. Oxford University Press, New York (1955). | Zbl

,[44] Multiscale modeling in the mechanics of materials. Curr. Opin. Solid State Mat. Sci. 3 (1998) 526-532.

, , in Theoretical and Applied Mechanics, Vol. 1., W.T. Koiter Ed., North-Holland, Amsterdam (1976) 207. |[46] One-Dimensional Metals. Wiley-VCH, Weinheim, 2nd edn. (2004).

and ,[47] Coarse-grained molecular dynamics and the atomic limit of finite elements. Phys. Rev. B 58 (1998) R5893-R5896.

and ,[48] MOPAC 2002 Manual. Fujitsu Ltd., Tokyo (2002).

,[49] Computer-simulation of local order in condensed phases of silicon. Phys. Rev. B 31 (1985) 5262-5271.

and ,[50] Solitons in polyacetylene. Phys. Rev. Lett. 42 (1979) 1698-1701.

, and ,[51] Quasicontinuum analysis of defects in solids. Philos. Mag. A-Phys. Condens. Matter Struct. Defect Mech. Prop. 73 (1996) 1529-1563.

, and ,[52] Quantifying the early stages of plasticity through nanoscale experiments and simulations. Phys. Rev. B 67 (2003) 104105.

, , , and ,[53] Thermodynamics of Crystals. Wiley, New York (1972).

,[54] Mechanical instabilities of homogeneous crystals. Phys. Rev. B 52 (1995) 12627-12635.

, , , and ,[55] Unifying two criteria of Born: Elastic instability and melting of homogeneous crystals. Physica A 240 (1997) 396-403.

, , , and ,[56] Fracture surface energy of glass. J. Am. Ceram. Soc. 52 (1969) 99-105.

,[57]

., Handbook of Materials Modeling. Springer, Dordrecht (2005).[58] Directed bending of a polymer film by light. Nature 425 (2003) 145.

, and ,[59] Stability criteria for homogeneously stressed materials and the calculation of elastic constants. Phys. Rev. B 54 (1996) 3841-3850.

and ,[60] Atomistic study of dislocation loop emission from a crack tip. Phys. Rev. Lett. 93 (2004) 025503.

, and ,[61] Atomistic configurations and energetics of crack extension in silicon. Phys. Rev. Lett. 93 (2004) 205504.

, and ,*Cited by Sources: *