Imre Simon : an exceptional graduate student
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Volume 39 (2005) no. 1, p. 297-304

This short note reviews the main contributions of the Ph.D. thesis of Imre Simon. His graduate work had major impact on algebraic theory of automata and thirty years later we are in a good position to appreciate how sensitive he was in selecting good problems, and how clever in solving them!

DOI : https://doi.org/10.1051/ita:2005017
Classification:  68Q70
Keywords: algebraic theory of automata, piece-wise testable languages, dot-depth hierarchy
@article{ITA_2005__39_1_297_0,
     author = {Th\'erien, Denis},
     title = {Imre Simon : an exceptional graduate student},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     publisher = {EDP-Sciences},
     volume = {39},
     number = {1},
     year = {2005},
     pages = {297-304},
     doi = {10.1051/ita:2005017},
     zbl = {1097.68580},
     mrnumber = {2132593},
     language = {en},
     url = {http://www.numdam.org/item/ITA_2005__39_1_297_0}
}
Thérien, Denis. Imre Simon : an exceptional graduate student. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Volume 39 (2005) no. 1, pp. 297-304. doi : 10.1051/ita:2005017. http://www.numdam.org/item/ITA_2005__39_1_297_0/

[1] R.S. Cohen and J.A. Brzozowski, Dot-depth of star-free events. J. Comput. Syst. Sci. 5 (1971) 1-15. | Zbl 0217.29602

[2] S. Eilenberg, Automata, Languages and Machines, Vol. B. Academic Press, New York (1976). | MR 530383 | Zbl 0359.94067

[3] R. Knast, A semigroup characterisation of dot-depth one languages. RAIRO Inform. Théor. 17 (1984) 321-330. | Numdam | Zbl 0522.68063

[4] R. Mcnaughton and S. Papert, Counter-free automata. MIT Press, Cambridge, Massachussetts (1971). | MR 371538 | Zbl 0232.94024

[5] J.E. Pin, Varieties of Formal Languages. Plenum, London (1986). | MR 912694 | Zbl 0632.68069

[6] J.E. Pin, Polynomial closure of group languages and open sets of the hall topology. Theor. Comput. Sci. 169 (1996) 185-200. | Zbl 0877.68076

[7] J.E. Pin and P. Weil, Polynomial closure and unambiguous product. Theor. Comput. Syst. 30 (1997) 1-39. | Zbl 0872.68119

[8] M. Schützenberger, On finite monoids having only trivial subgroups. Inform. Control 8 (1965) 190-194. | Zbl 0131.02001

[9] I. Simon, Hierarchies of events with dot-depth one. Ph.D. thesis, University of Waterloo (1972).

[10] H. Straubing, Finite semigroup varieties of the form 𝐕*𝐃. J. Pure Appl. Algebra 36 (1985) 53-94. | Zbl 0561.20042

[11] H. Straubing and D. Thérien, Partially ordered finite monoids and a theorem of I. Simon. J. Algebra 119 (1988) 393-399. | Zbl 0658.20035

[12] D. Thérien, Classification of finite monoids: The language approach. Theor. Comput. Sci. 14 (1981) 195-208. | Zbl 0471.20055

[13] D. Thérien and A. Weiss, Graph congruences and wreath products. J. Pure Appl. Algebra 36 (1985) 205-212. | Zbl 0559.20042

[14] B. Tilson, Categories as algebra: An essential ingredient in the theory of monoids. J. Pure Appl. Algebra 48 (1987) 83-198. | Zbl 0627.20031