Compact topologies on locally presentable categories
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 38 (1997) no. 3, pp. 227-255.
@article{CTGDC_1997__38_3_227_0,
     author = {Karazeris, Panagis},
     title = {Compact topologies on locally presentable categories},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     pages = {227--255},
     publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS},
     volume = {38},
     number = {3},
     year = {1997},
     zbl = {0884.18005},
     mrnumber = {1474567},
     language = {en},
     url = {http://www.numdam.org/item/CTGDC_1997__38_3_227_0/}
}
Karazeris, Panagis. Compact topologies on locally presentable categories. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 38 (1997) no. 3, pp. 227-255. http://www.numdam.org/item/CTGDC_1997__38_3_227_0/

[1] J. Adamek and J. Rosicky, Reflections in Locally Presentable Categories, Archivum Matematicum (Brno), 25 (1989), 89-94. | EuDML 18262 | MR 1189203 | Zbl 0742.18002

[2] B. Banaschewski, Another Look at the Localic Tychonoff Theorem, Comment. Mat. Univ. Carolinae 29 (1988), 647-656. | EuDML 17676 | MR 982782 | Zbl 0667.54009

[3] F. Borceux and M. Kelly, On Locales of Localizations, Journal of Pure and Applied Algebra, 46 (1987), 1-34. | MR 894389 | Zbl 0614.18005

[4] F. Borceux and M.C. Pedicchio, A Characterization of Quasitoposes, Journal of Algebra, 139, 2 (1991), 505-526. | MR 1113788 | Zbl 0737.18003

[5] F. Borceux and B. Veit, Continuous Grothendieck Topologies, Annales de la Societe Scient. Brussels, T100, I (1986), 31-42. | MR 889732 | Zbl 0612.18005

[6] F. Borceux and B. Veit, Subobject Classifiers for Algebraic Structures, Journal of Algebra, 112 (1988), 306-314. | MR 926607 | Zbl 0636.18003

[7] S. Fakir, Objects Algebriquement Clos et Injectifs dans les Categories Localement Presentables, Bull. Soc. Math. France, Memoir 42 (1975). | EuDML 94715 | Numdam | MR 401879 | Zbl 0321.18007

[8] P. Freyd and M. Kelly, Categories of Continuous Functors, Journal of Pure and Applied Algebra, 2 (1972),169-191. | MR 322004 | Zbl 0257.18005

[9] P. Gabriel and F. Ulmer, Lokal Prœsentierbare Kategorien, Springer Lecture Notes on Mathematics, vol. 221 (1971). | Zbl 0225.18004

[10] P.T. Johnstone, Stone Spaces, Cambridge University Press, Cambridge (1982). | MR 698074 | Zbl 0499.54001

[11] P. Karazeris, The Frame of Compact Topologies on Locally Finitely Presentable Categories, Ph.D Thesis, Aarhus Universitet, Matematisk Institut (1992).

[12] A. Kock and G. Wraith, Lectures on Elementary Toposes, Matematisk Institut, Aarhus Universitet, Lecture Notes Series 30, (1971) | MR 342578 | Zbl 0251.18015

[13] F.W. Lawvere, Intrinsic Co-Heyting Boundaries and the Leibnitz Rule in Certain Toposes, in: A. Carboni, M. C. Peddichio, P. Rossolini (eds) Proceedings, Como 1990, Springer Lecture Notes on Mathematics, vol. 1488, (1992). | MR 1173018 | Zbl 0745.18002

[14] S. Mac Lane and I. Moerdijk, Sheaves in Geometry and Logic, Springer, Berlin (1992) | MR 1300636 | Zbl 0822.18001

[15] M. Makkai and A. Pitts, Some Results on Locally Finitely Presentable Categories, Transactions American Math. Soc. 299 (1987), 473-496. | MR 869216 | Zbl 0615.18002

[16] G. Monro, A Category-Theoretic Approach to Boolean-Valued Models of Set Theory, Journal of Pure and Applied Algebra, 42 (1986), 245-274. | MR 857894 | Zbl 0626.03046

[17] N. Popescu, Abelian Categories with Applications to Rings and Modules, Academic Press, New York (1973). | MR 340375 | Zbl 0271.18006

[18] M. Prest, Elementary Torsion Theories and Locally Finitely Presented Categories, Journal of Pure and Applied Algebra,18 (1980), 205-212. | MR 585223 | Zbl 0453.18009

[19] B. Stenström, Rings of Quotients Springer, Berlin (1975). | MR 389953 | Zbl 0296.16001

[20] W. Tholen, Filtered Colimits are Directed Colimits, Fachbereich Matematik und Informatik, Fern Universitat, 15 (1982), 149-152.

[21] F. Ulmer, On the Existence and Exactness of the Associated Sheaf Functor, Journal of Pure and Applied Algebra, 3 (1973), 295-306. | MR 374231 | Zbl 0297.18005