Archimedian local C -rings and models of synthetic differential geometry
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 27 (1986) no. 3, p. 3-22
@article{CTGDC_1986__27_3_3_0,
     author = {Bunge, Marta and Dubuc, Eduardo J.},
     title = {Archimedian local $C^\infty $-rings and models of synthetic differential geometry},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS},
     volume = {27},
     number = {3},
     year = {1986},
     pages = {3-22},
     zbl = {0614.18007},
     language = {en},
     url = {http://www.numdam.org/item/CTGDC_1986__27_3_3_0}
}
Bunge, Marta; Dubuc, Eduardo J. Archimedian local $C^\infty $-rings and models of synthetic differential geometry. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 27 (1986) no. 3, pp. 3-22. http://www.numdam.org/item/CTGDC_1986__27_3_3_0/

1 O. Bruno, Internal mathematics in toposes, Trabajos de Matem. 70, I.A.M, Buenos-Aires (1984).

2 E.J. Dubuc, Sur les modèles de la Géometric Différentielle Synthétique, Cahiers Top. et Géom. Diff. XX-3 (1979), 231-279. | Numdam | MR 557083 | Zbl 0473.18008

3 E.J. Dubuc, C∞-schemes, Amer. J. Math. 103 (1981), 683-690. | Zbl 0483.58003

4 E.J. Dubuc, Logical opens and real numbers in topoi, J. Pure Appl. Algebra (to appear). | MR 866615 | Zbl 0608.18004

5 E.J. Dubuc & G. Taubin, Analytic rings, Cahiers Top. et Géom. Diff. XXIV (1983). | Numdam | Zbl 0575.32004

6 A. Kock, Properties of well adapted models for synthetic differential geometry, J. Pure Appl. Algebra 20 (1981), 55-70. | MR 596153 | Zbl 0487.18006

7 A. Kock, Synthetic Differential Geometry, Cambridge Univ. Press, 1981. | MR 649622 | Zbl 0466.51008

8 I. Moerdijk & G.E. Reyes, Smooth spaces versus continuous spaces in models for synthetic differential geometry J. Pure Appl. Algebra 32 (1984). | MR 741963 | Zbl 0535.18003

9 M. Bunge & E.J. Dubuc, Local concepts in SDG and germ representability, in: Lopez Escobar, Kueker & Smith (ed.), Mathematical Logic and Theoretical Computer Science, M. Dekker (to appear). | MR 930679 | Zbl 0658.18004

10 A. Joyal & G.E. Reyes, Separably real closed local rings, Sydney Category Seminar, June 1982.