When is Ω a cogenerator in a topos ?
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 16 (1975) no. 1, pp. 3-15.
@article{CTGDC_1975__16_1_3_0,
     author = {Borceux, Francis},
     title = {When is $\Omega $ a cogenerator in a topos ?},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     pages = {3--15},
     publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS},
     volume = {16},
     number = {1},
     year = {1975},
     mrnumber = {382393},
     zbl = {0311.18006},
     language = {en},
     url = {http://www.numdam.org/item/CTGDC_1975__16_1_3_0/}
}
Borceux, Francis. When is $\Omega $ a cogenerator in a topos ?. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 16 (1975) no. 1, pp. 3-15. http://www.numdam.org/item/CTGDC_1975__16_1_3_0/

[1] F. Borceux and G.M. Kelly, A notion of limit for enriched categories, Bul. Austr. Math. Soc. 12 (1975), 49-72. | MR 369477 | Zbl 0329.18011

[2] S. Eilenberg and G.M. Kelly, Closed categories, Proc. Conf. on Cat. Alg., La Jolla (1965). | MR 225841 | Zbl 0192.10604

[3] S. Eilenberg and J.C. Moore, Adjoint functors and triples, Ill. J. of Math. V-2 (1965), 381-398. | MR 184984 | Zbl 0135.02103

[4] P. Freyd, Some aspects of topoi, Bull. of the Austr. Math. Soc. 7-1 (1972), 1-76. | MR 396714 | Zbl 0252.18001

[5] W. Mitchell, Boolean topoi and the theory of sets, J. Pure and App. Alg. (Oct. 1972). | MR 319757 | Zbl 0245.18001

[6] M. Tierney, Sheaf theory and the continuum hypothesis, Proc. of the Halifax Conf. on Category theory, intuitionistic Logic and Algebraic Geometry, Springer, Lect. Notes in Math. 274 (1973). | MR 373888 | Zbl 0244.18005