Dimension reduction for -Δ 1
ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 1, p. 42-77
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consulter l'article sur le site de la revue
A 3D-2D dimension reduction for -Δ1 is obtained. A power law approximation from -Δp as p → 1 in terms of Γ-convergence, duality and asymptotics for least gradient functions has also been provided.
DOI : https://doi.org/10.1051/cocv/2013053
Classification:  35J92,  49J45,  49K20,  49M29
@article{COCV_2014__20_1_42_0,
     author = {Amendola, Maria Emilia and Gargiulo, Giuliano and Zappale, Elvira},
     title = {Dimension reduction for $-\Delta \_1$},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {20},
     number = {1},
     year = {2014},
     pages = {42-77},
     doi = {10.1051/cocv/2013053},
     zbl = {1288.35266},
     language = {en},
     url = {http://www.numdam.org/item/COCV_2014__20_1_42_0}
}
Amendola, Maria Emilia; Gargiulo, Giuliano; Zappale, Elvira. Dimension reduction for $-\Delta _1$. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 1, pp. 42-77. doi : 10.1051/cocv/2013053. http://www.numdam.org/item/COCV_2014__20_1_42_0/

[1] E. Acerbi, G. Buttazzo and D. Percivale, A variational definition of the strain energy for an elastic string. J. Elast. 25 (1991) 137-148. | MR 1111364 | Zbl 0734.73094

[2] L. Ambrosio and G. Dal Maso, On the relaxation in BV(Ω;Rm) of quasi-convex integrals. J. Funct. Anal. 109 (1992) 76-97. | MR 1183605 | Zbl 0769.49009

[3] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. Oxford: Clarendon Press (2000). | MR 1857292 | Zbl 0957.49001

[4] R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). | MR 450957 | Zbl 1098.46001

[5] G. Anzellotti, Pairing between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl. 135 (1983) 293-318. | MR 750538 | Zbl 0572.46023

[6] A. Braides and I. Fonseca, Brittle thin films. Appl. Math. Optim. 44 (2001) 299-323. | MR 1851742 | Zbl 0999.49012

[7] J.F. Babadjian, E. Zappale and H. Zorgati, Dimensional reduction for energies with linear growth involving the bending moment. J. Math. Pures Appl. 90 (2008) 520-549. | MR 2472892 | Zbl 1153.49017

[8] M. Bocea and V. Nesi, Γ-convergence of power-law functionals, variational principles in L∞, and applications. SIAM J. Math. Anal. 39 (2008) 1550-1576. | MR 2377289 | Zbl 1166.35300

[9] H. Brezis, Analisi Funzionale. Liguori, Napoli (1986).

[10] G. Dal Maso, An introduction to Γ-convergence. Progress Nonlinear Differ. Equ. Appl. Birkhäuser Boston, Inc., Boston, MA (1983). | Zbl 0816.49001

[11] R. De Arcangelis and C. Trombetti, On the relaxation of some classes of Dirichlet minimum problems. Commun. Partial Differ. Eqs. 24 (1999) 975-1006. | MR 1680889 | Zbl 0928.49014

[12] E. De Giorgi, G. Letta, Une notion generale de convergence faible pour des fonctions croissantes d'ensemble. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 4 (1977) 61-99. | Numdam | MR 466479 | Zbl 0405.28008

[13] F. Demengel, On Some Nonlinear Partial Differential Equations involving the 1-Laplacian and Critical Sobolev Exponent. ESAIM: COCV 4 (1999) 667-686. | Numdam | MR 1746172 | Zbl 0939.35070

[14] F. Demengel, Théorèmes d'existence pour des equations avec l'opérateur 1-Laplacien, première valeur propre pour − Δ1. (French) [Some existence results for partial differential equations involving the 1-Laplacian: first eigenvalue for − Δ1]. C. R. Math. Acad. Sci. Paris 334 (2002) 1071-1076. | MR 1911649 | Zbl 1142.35408

[15] F. Demengel, Functions locally almost 1-harmonic. Appl. Anal. 83 (2004) 865-896. | MR 2083734 | Zbl 1135.35333

[16] F. Demengel, On some nonlinear equation involving the 1-Laplacian and trace map inequalities. Nonlinear Anal. 47 (2002) 1151-1163. | MR 1880578 | Zbl 1016.49001

[17] I. Ekeland and R. Temam, Convex analysis and variational problems. North-Holland, Amsterdam (1976). | MR 463994 | Zbl 0322.90046

[18] I. Fonseca and S. Müller, Relaxation of quasiconvex functionals in BV(Ω,RN) for integrands f(x,u,∇u). Arch. Ration. Mech. Anal. 123 (1993) 1-49. | MR 1218685 | Zbl 0788.49039

[19] M. Giaquinta, G. Modica and J. Soucek, Functionals with linear growth in the Calculus of Variations. Comment. Math. Univ. Carolin. 20 (1979) 143-156. | MR 526154 | Zbl 0409.49006

[20] C. Goffman and J. Serrin, Sublinear functions of Measures and Variational Integrals. Duke Math. J. 31 (1964) 159-178. | MR 162902 | Zbl 0123.09804

[21] E. Giusti, Minimal surfaces and functions of bounded variation. Birkhauser (1977). | MR 638362 | Zbl 0402.49033

[22] J. Heinonen, T. Kilpelainen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford, New York, Tokyo, Clarendon Press (1993). | MR 1207810 | Zbl 0780.31001

[23] P. Juutinen, p-harmonic approximation of functions of least gradient. Indiana Univ. Math. J. 54 (2005) 1015-1029. | MR 2164415 | Zbl 1100.49025

[24] B. Kawhol, Variations on the p-Laplacian, in edited by D. Bonheure, P. Takac. Nonlinear Elliptic Partial Differ. Equ. Contemporary Math. 540 (2011) 35-46. | MR 2841298

[25] R. Kohn and R. Temam, Dual spaces of Stresses and Strains, with Applications to Hencky Plasticity. Appl. Math. Optim. 10 (1983) 1-35. | MR 701898 | Zbl 0532.73039

[26] H. Le Dret, and A. Raoult, The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 74 (1995) 549-578. | MR 1365259 | Zbl 0847.73025

[27] P. Lindqvist, On the Equation div( | ∇u | p − 2∇u) + λ | u | p − 2u = 0. Proc. Amer. Math. Soc. 109 (1990) 157-164. | MR 1007505 | Zbl 0714.35029

[28] S. Monsurró and E. Zappale, On the relaxation and homogenization of some classes of variational problems with mixed boundary conditions. Rev. Roum. Math. Pures Appl. 51 (2006) 345-363. | MR 2275828 | Zbl 1120.49012

[29] P. Sternberg, G. Williams and W. P. Ziemer, Existence, uniqueness, and regularity for functions of least gradient. J. Reine Angew. Math. 430 (1992) 3560. | MR 1172906 | Zbl 0756.49021

[30] P. Sternberg and W.P. Ziemer, The Dirichlet problem for functions of least gradient. In Degenerate diffusions (Minneapolis, MN, 1991). In vol. 47 of IMA Vol. Math. Appl. Springer, New York (1993) 197-214. | MR 1246349 | Zbl 0818.49024

[31] E. Zappale, On the homogenization of Dirichlet Minimum Problems. Ricerche di Matematica LI (2002) 61-92. | MR 1961839 | Zbl 1146.35392

[32] W.P. Ziemer, Weakly differentiable functions. In vol. 120 of Graduate Texts in Math. Springer, Berlin (1989). | MR 1014685 | Zbl 0692.46022