Canonical heights on varieties with morphisms
Compositio Mathematica, Tome 89 (1993) no. 2, p. 163-205
@article{CM_1993__89_2_163_0,
     author = {Call, Gregory S. and Silverman, Joseph},
     title = {Canonical heights on varieties with morphisms},
     journal = {Compositio Mathematica},
     publisher = {Kluwer Academic Publishers},
     volume = {89},
     number = {2},
     year = {1993},
     pages = {163-205},
     zbl = {0826.14015},
     mrnumber = {1255693},
     language = {en},
     url = {http://www.numdam.org/item/CM_1993__89_2_163_0}
}
Call, Gregory S.; Silverman, Joseph H. Canonical heights on varieties with morphisms. Compositio Mathematica, Tome 89 (1993) no. 2, pp. 163-205. http://www.numdam.org/item/CM_1993__89_2_163_0/

1. Bosch, S., Lütkebohmert, W., and Raynaud, M.: Néron Models. Springer-Verlag, Berlin, (1990). | MR 1045822 | Zbl 0705.14001

2. Call, G.: Variation of local heights on an algebraic family of abelian varieties. Théorie des Nombres, Berlin, (1989). | MR 1024553 | Zbl 0701.14022

3. Call, G. and Silverman, J.: Computing canonical heights on K3 surfaces, in preparation.

4. Dem'Janenko, V.A.: An estimate of the remainder term in Tate's formula (Russian), Mat. Zametki 3 (1968) 271-278. | MR 227166 | Zbl 0161.40601

5. Dem'Janenko, V.A.: Rational points of a class of algebraic curves, AMS Translations (2) 66 (1968) 246-272. | Zbl 0181.24001

6. Green, W.: Heights in families of abelian varieties, Duke Math. J. 58 (1989) 617-632. | MR 1016438 | Zbl 0698.14043

7. Hartshorne, R.: Algebraic Geometry, Springer-Verlag, New York, (1977). | MR 463157 | Zbl 0367.14001

8. Lang, S.: Fundamentals of Diophantine Geometry, New York, (1983). | MR 715605 | Zbl 0528.14013

9. Lang, S.: Number Theory III: Diophantine Geometry. Encycl. Math. Sci. v. 60, Springer-Verlag, Berlin, (1991). | MR 1112552 | Zbl 0744.14012

10. Lewis, D.J.: Invariant sets of morphisms on projective and affine number spaces, J. Algebra 20 (1972) 419-434. | MR 302602 | Zbl 0245.12003

11. Manin, Ju.: The p-torsion of elliptic curves is uniformly bounded. Izv. Akad. Nauk. SSSR 33 (1969) 433-438. | MR 272786 | Zbl 0205.25002

12. Manin, Ju. and Zarhin, Ju.: Height on families of abelian varieties, Math. USSR Sbor. 18 (1972) 169-179. | Zbl 0263.14011

13. Narkiewicz, W.: On polynomial transformations in several variables, Acta Arith. 11 (1965) 163-168. | MR 186625 | Zbl 0148.41801

14. Néron, A.: Quasi-fonctions et hauteurs sur les variétés abéliennes, Annals of Math. 82 (1965) 249-331. | MR 179173 | Zbl 0163.15205

15. Silverman, J.H.: Heights and the specialization map for families of abelian varieties, J. Reine Angew. Math. 342 (1983) 197-211. | MR 703488 | Zbl 0505.14035

16. Silverman, J.H.: The Arithmetic of Elliptic Curves, Springer, New York, (1986). | MR 817210 | Zbl 0585.14026

17. Silverman, J.H.: Arithmetic distance functions and height functions in Diophantine geometry, Math. Ann. 279 (1987) 193-216. | MR 919501 | Zbl 0607.14013

18. Silverman, J.H.: Computing heights on elliptic curves, Math. Comp. 51 (1988) 339-358. | MR 942161 | Zbl 0656.14016

19. Silverman, J.H.: Rational points on K3 surfaces: A new canonical height, Invent. Math. 105 (1991) 347-373. | MR 1115546 | Zbl 0754.14023

20. Silverman, J.H.: Variation of the canonical height on elliptic surfaces I: Three examples, J. Reine Angew. Math. 426 (1992) 151-178. | MR 1155751 | Zbl 0739.14023

21. Tate, J.: Letter to J.-P. Serre, Oct. 1, (1979).

22. Tate, J.: Variation of the canonical height of a point depending on a parameter, Amer. J. Math. 105 (1983) 287-294. | MR 692114 | Zbl 0618.14019

23. Wehler, J.: K3-surfaces with Picard number 2, Arch. Math. 50 (1988) 73-82. | MR 925498 | Zbl 0602.14038

24. Wehler, J.: Hypersurfaces of the Flag Variety, Math. Zeit. 198 (1988) 21-38. | MR 938026 | Zbl 0662.14029

25. Zimmer, H.: On the difference of the Weil height and the Néron-Tate height, Math. Z. 174 (1976) 35-51. | MR 419455 | Zbl 0303.14003