Heights in number fields
Bulletin de la Société Mathématique de France, Tome 107 (1979), p. 433-449
@article{BSMF_1979__107__433_0,
     author = {Schanuel, Stephen Hoel},
     title = {Heights in number fields},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {107},
     year = {1979},
     pages = {433-449},
     doi = {10.24033/bsmf.1905},
     zbl = {0428.12009},
     mrnumber = {81c:12025},
     language = {en},
     url = {http://www.numdam.org/item/BSMF_1979__107__433_0}
}
Schanuel, Stephen Hoel. Heights in number fields. Bulletin de la Société Mathématique de France, Tome 107 (1979) pp. 433-449. doi : 10.24033/bsmf.1905. http://www.numdam.org/item/BSMF_1979__107__433_0/

[1] Davenport (H.). - On a principle of Lipschitz, J. London math. Soc., t. 26, 1951, p. 179-183. | MR 13,323d | Zbl 0042.27504

[2] Hardy (G. H.) and Wright (E. M.). - An introduction to the theory of numbers. - Oxford, Clarendon Press, 1938. | JFM 64.0093.03 | Zbl 0020.29201

[3] Hecke (H.). - Vorlesungen über die Theorie der algebraischen Zahlen. - Leipzig, Akademische Verlagsgesellschaft, 1923. | JFM 49.0106.10 | Zbl 0041.01102

[4] Landau (E.). - Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale. - Leipzig, Teubner, 1927. | JFM 53.0141.09

[5] Lang (S.). - Diophantine geometry. - New York, Interscience Publishers, 1962 (Interscience Tracts in pure and applied Mathematics, 11). | MR 26 #119 | Zbl 0115.38701

[6] Lang (S.). - Algebraic number theory. - Reading, Addison-Wesley publishing Company, 1970 (Addison-Wesley Series in Mathematics). | MR 44 #181 | Zbl 0211.38404

[7] Schanuel (S.). - On heights in number fields, Bull. Amer. math. Soc., t. 70, 1964, p. 262-263. | MR 29 #91 | Zbl 0122.04202

[8] Weber (H.). - Lehrbuch der Algebra. Band 2. 2te Auflage. - Braunschweig, F. Vieweg, 1899. | JFM 30.0093.01