@article{ASENS_1991_4_24_6_635_0, author = {Turaev, Vladimir G.}, title = {Skein quantization of {Poisson} algebras of loops on surfaces}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {635--704}, publisher = {Elsevier}, volume = {Ser. 4, 24}, number = {6}, year = {1991}, doi = {10.24033/asens.1639}, mrnumber = {94a:57023}, zbl = {0758.57011}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.1639/} }
TY - JOUR AU - Turaev, Vladimir G. TI - Skein quantization of Poisson algebras of loops on surfaces JO - Annales scientifiques de l'École Normale Supérieure PY - 1991 SP - 635 EP - 704 VL - 24 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.24033/asens.1639/ DO - 10.24033/asens.1639 LA - en ID - ASENS_1991_4_24_6_635_0 ER -
%0 Journal Article %A Turaev, Vladimir G. %T Skein quantization of Poisson algebras of loops on surfaces %J Annales scientifiques de l'École Normale Supérieure %D 1991 %P 635-704 %V 24 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.24033/asens.1639/ %R 10.24033/asens.1639 %G en %F ASENS_1991_4_24_6_635_0
Turaev, Vladimir G. Skein quantization of Poisson algebras of loops on surfaces. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 24 (1991) no. 6, pp. 635-704. doi : 10.24033/asens.1639. http://www.numdam.org/articles/10.24033/asens.1639/
[1] Hamiltonian Structures on Lie Groups, Lie Bialgebras and the Meaning of the classical Yang-Baxter Equation (Doklady A.N. S.S.S.R., Vol. 268, 1982, pp. 285-287 ; English translation : Soviet Math. Dokl., Vol. 27, No. 1, 1983). | MR | Zbl
,[2] Quantum Groups (Proc. Internat. Congress Math., Berkeley, 1986, Amer. Math. Soc., Providence, R.I., 1987, pp. 798-820). | MR | Zbl
,[3] The Symplectic Nature of Fundamental Groups of Surfaces (Adv. Math., Vol. 54, 1984, pp. 200-225). | MR | Zbl
,[4] Invariant Functions on Lie Groups and Hamiltonian Flows of Surface Group Representations (Invent. Math., Vol. 85, 1986, pp. 263-302). | MR | Zbl
,[5] Dichromatic Link Invariants, (Trans. Amer. Math. Soc., Vol. 321, 1990, pp. 197-229). | MR | Zbl
and ,[6] Composition Products and Models for the Homfly Polynomial, preprint, Grenoble, 1988.
,[7] New Invariants in the Theory of Knots (Am. Math. Mon., Vol. 95, 1988, pp. 195-242). | MR | Zbl
,[8] Rational Conformal Field Theory and Invariants of 3-Manifolds, preprint, 1989.
,[9] Polynomials for Links (Bull. London Math. Soc., Vol. 20, 1988, pp. 558-588). | MR | Zbl
,[10] A Polynomial Invariant of Oriented Links (Topology, Vol. 26, 1987, pp. 107-141). | MR | Zbl
and ,[11] Skein Modules of 3-manifolds, preprint, 1987.
,[12] Quantized Universal Enveloping Algebras, the Yang-Baxter Equation and Invariants of Links, I and II, L.O.M.I. preprints E-4-87 and E-17-87, Leningrad, 1988.
,[13] Invariants of 3-manifolds via Link Polynomials and Quantum Groups, (Invent. Math., Vol. 103, 1991, pp. 547-597). | MR | Zbl
and ,[14] Dressing Transformations and Poisson Group Actions (Publ. Res. Inst. Math. Sci. Kyoto Univ., Vol. 21, 1985, pp. 1237-1260). | MR | Zbl
,[15] Lie Algebras and Lie Groups, Benjamin, New York-Amsterdam, 1965. | MR | Zbl
,[16] Intersections of Loops in Two-Dimensional Manifolds (Matem. Sbornik, Vol. 106, 1978, pp. 566-588 ; English translation : Math. U.S.S.R. Sbornik, Vol. 35, 1979, pp. 229-250). | MR | Zbl
,[17] Multivariable Generalizations of the Seifert form of Classical Knot (Matem. Sbornik, Vol. 116, 1981, pp. 370-397 ; English translation : Math. U.S.S.R. Sbornik, (Vol. 44, 1983, pp. 335-361). | Zbl
,[18] The Yang-Baxter Equation and Invariants of Links (Invent. Math., Vol. 92, 1988, pp. 527-553). | MR | Zbl
,[19] The Conway and Kauffman Modules of the Solid Torus (Zap. nauchn. sem. L.O.M.I., Vol. 167, 1988, pp. 79-89 ; English translation : J. Soviet. Math.). | MR | Zbl
,[20] Algebras of Loops on Surfaces, Algebras of Knots and Quantization, preprint L.O.M.I., Leningrad, 1988.
,[21] Groupes quantiques (d'après V. G. Drinfel'd) (Astérisque, Vol. 152-153, 1987, pp. 305-319). | Numdam | MR | Zbl
,[22] Quantum Field Theory and the Jones Polynomial, (Comm. Math. Phys., Vol. 121, 1989, pp. 351-399). | MR | Zbl
,[23] On the Symplectic Geometry of Deformations of Hyperbolic Surface (Ann. Math., Vol. 117, 1983, pp. 207-234). | MR | Zbl
,Cited by Sources: