@article{ASENS_1974_4_7_1_5_0, author = {Goldschmidt, Hubert}, title = {Prolongements d'\'equations diff\'erentielles lin\'eaires. {III.} {La} suite exacte de cohomologie de {Spencer}}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {5--27}, publisher = {Elsevier}, volume = {4e s{\'e}rie, 7}, number = {1}, year = {1974}, doi = {10.24033/asens.1259}, zbl = {0319.35018}, mrnumber = {51 #4331}, language = {fr}, url = {http://www.numdam.org/articles/10.24033/asens.1259/} }
TY - JOUR AU - Goldschmidt, Hubert TI - Prolongements d'équations différentielles linéaires. III. La suite exacte de cohomologie de Spencer JO - Annales scientifiques de l'École Normale Supérieure PY - 1974 DA - 1974/// SP - 5 EP - 27 VL - 4e s{\'e}rie, 7 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.24033/asens.1259/ UR - https://zbmath.org/?q=an%3A0319.35018 UR - https://www.ams.org/mathscinet-getitem?mr=51 #4331 UR - https://doi.org/10.24033/asens.1259 DO - 10.24033/asens.1259 LA - fr ID - ASENS_1974_4_7_1_5_0 ER -
Goldschmidt, Hubert. Prolongements d'équations différentielles linéaires. III. La suite exacte de cohomologie de Spencer. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 7 (1974) no. 1, pp. 5-27. doi : 10.24033/asens.1259. http://www.numdam.org/articles/10.24033/asens.1259/
[1] Existence theorems for analytic linear partial differential equations (Ann. of Math., vol. 86, 1967, p. 246-270). | MR 36 #2933 | Zbl 0154.35103
,[2] Prolongations of linear differential equations. I. A conjecture of Élie Cartan (Ann. scient. Éc. Norm. Sup., 4e série, tome 1, 1968, p. 417-444). | Numdam | MR 38 #3888 | Zbl 0167.09402
,[3] On the Spencer cohomology of a Lie equation (Proc. Sympos. Pure Math., vol. 23, Amer. Math. Soc., Providence, R. I., 1973, p. 379-385). | MR 49 #8064 | Zbl 0264.58010
,[4] Lectures on curves on an algebraic surface (Ann. of Math. Studies, n° 59, Princeton University Press, Princeton, N. J., 1966). | MR 35 #187 | Zbl 0187.42701
,[5] Formal properties of over-determined systems of linear partial differential equations (Ph. D. thesis, Harvard University, 1964).
,[6] Faisceaux algébriques cohérents (Ann. of Math., vol. 61, 1955, p. 197-278). | MR 16,953c | Zbl 0067.16201
,[7] Overdetermined systems of linear partial differential equations (Bull. Amer. Math. Soc., vol. 75, 1969, p. 179-239). | MR 39 #3533 | Zbl 0185.33801
,Cité par Sources :