A covariant and extended model for relativistic magnetofluiddynamics
Annales de l'I.H.P. Physique théorique, Tome 58 (1993) no. 3, pp. 343-361.
@article{AIHPA_1993__58_3_343_0,
     author = {Pennisi, Sebastiano},
     title = {A covariant and extended model for relativistic magnetofluiddynamics},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {343--361},
     publisher = {Gauthier-Villars},
     volume = {58},
     number = {3},
     year = {1993},
     zbl = {0771.76078},
     mrnumber = {1222947},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1993__58_3_343_0/}
}
Pennisi, Sebastiano. A covariant and extended model for relativistic magnetofluiddynamics. Annales de l'I.H.P. Physique théorique, Tome 58 (1993) no. 3, pp. 343-361. http://www.numdam.org/item/AIHPA_1993__58_3_343_0/

[1] T. Ruggeri and A. Strumia, Convex covariant entropy density, symmetric conservative form, and shock waves in relativistic magnetohydrodynamics, J. Math. Phys., 22, 1981, p. 1824. | MR 628566 | Zbl 0469.76130

[2] A.M. Anile and S. Pennisi, On the mathematical structure of test relativistic magneto-fluidynamics, Ann. Inst. Henri Poincaré, 46, 1987, p. 27. | Numdam | MR 877994 | Zbl 0618.76132

[3] A. Strumia, Wave propagation and symmetric hyperbolic systems of conservation laws with constrained field variables. I. - Wave propagation with constrained fields, Il Nuovo Cimento, 101 B, 1988, p. 1. | MR 955218

[4] A. Strumia, Wave propagation and symmetric hyperbolic systems of conservation laws with constrained field variables. II. - Symmetric hyperbolic systems with constrained fields, Il Nuovo Cimento, 101 B, 1988, p. 19. | MR 955219

[5] I.-S. Liu and I. Müller, Extended thermodynamics of classical and degenerate ideal gases, Arch. Rational Mech. Anal., 83, 1983, p. 285. | MR 714978 | Zbl 0554.76014

[6] I.-S. Liu, I. Mûller and T. Ruggeri, Relativistic thermodynamics of gases, Ann. of Phys., 169, 1986, p. 191. | MR 846050

[7] I.-S. Liu, Method of Lagrange multipliers for exploitation of the entropy principle, Arch. Rational Mech. Anal., 46, 1972, p. 131. | MR 337164 | Zbl 0252.76003

[8] K.O. Friedrichs, Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math., 7, 1954, p. 345. | MR 62932 | Zbl 0059.08902

[9] K.O. Friedrichs and P.D. Lax, Systems of conservation equations with a convex extension, Proc. Nat. Acad. Sci. U.S.A., 68, 1971, p. 1686. | MR 285799 | Zbl 0229.35061

[10] G. Boillat, sur l'existence et la recherche d'équation de conservation supplémentaires pour les systèmes hyperboliques, C. R. Acad. Sci. Paris, 278, Series A, 1974, p. 909. | MR 342870 | Zbl 0279.35058

[11] T. Ruggeri, Struttura dei sistemi alle derivative parziali compatibiliti con un principio di entropia, Suppl. B.U.M.I. del G.N.F.M., Fisica Matematica, 4, 1985, p. 5.

[12] T. Ruggeri and A. Strumia, Main field and convex covariant density for quasi-linear hyperbolic systems; relativistic fluid dynamics, Ann. Inst. Henri Poincaré, Phys. Théor., 34, 1981, p.165. | Numdam | MR 605357 | Zbl 0473.76126

[13] S. Pennisi and M. Trovato, Mathematical characterization of functions underlying the principle of relativity, Le Matematiche, XLIV, 1989, p. 173. | MR 1143459 | Zbl 0746.15004

[14] G. Boillat and T. Ruggeri, Wave and shock velocities in relativistic magnetohydrodynamics compared with the speed of light, Continuum Mech. Thermodyn, 1, 1989, p. 47. | MR 1001436 | Zbl 0760.76099

[15] A.M. Anile, S. Pennisi and M. Sammartino, Covariant radiation hydrodynamics, Ann. Inst. Henri Poincaré, 56 (1), 1992, p. 49. | Numdam | MR 1149868 | Zbl 0800.76027

[16] K.O. Friedrichs, On the laws of relativistic electromagnetofluid dynamics, Comm. Pure Appl. Math., 27, 1974, p. 749. | MR 375928 | Zbl 0308.76075

[17] A. Fisher and D.P. Marsden, The Einstein evolution equations as a first order quasilinear symmetric hyperbolic system, Comm. Math. Phys., 28, 1972, p. 1. | MR 309507 | Zbl 0247.35082