Complétude des noyaux reproduisants dans les espaces modèles
Annales de l'Institut Fourier, Tome 52 (2002) no. 2, pp. 661-686.

Soit (λ n ) n1 une suite de Blaschke du disque unité 𝔻 et Θ une fonction intérieure. On suppose que la suite de noyaux reproduisants k Θ (z,λ n ) : = 1-Θ(λ n ) ¯Θ(z) 1-λ n ¯z n1 est complète dans l’espace modèle K Θ p :=H p ΘH 0 p ¯, 1<p<+. On étudie, dans un premier temps, la stabilité de cette propriété de complétude, à la fois sous l’effet de perturbations des fréquences (λ n ) n1 mais également sous l’effet de perturbations de la fonction Θ. On retrouve ainsi un certain nombre de résultats classiques sur les systèmes d’exponentielles. Puis, si on suppose de plus que la suite (k Θ (.,λ n )) n1 est minimale, on montre que, pour une certaine classe de fonctions Θ, la famille biorthogonale associée est aussi complète.

Let (λ n ) n1 be a Blaschke sequence of the unit disc 𝔻 and Θ be an inner function. Assume that the sequence of reproducing kernels k Θ (z,λ n ) : = 1-Θ(λ n ) ¯Θ(z) 1-λ n ¯z n1 is complete in the model space K Θ p :=H p ΘH 0 p ¯, 1<p<+. First of all, we study the stability of this completeness not only under perturbations of frequencies (λ n ) n1 but also under perturbations of function Θ. We recover some classical results on exponential systems. Then, if we assume further that the sequence (k Θ (.,λ n )) n1 is minimal, we show that, for a certain class of functions Θ, the biorthogonal family is also complete.

DOI : https://doi.org/10.5802/aif.1897
Classification : 46E22,  30C40,  30D55,  47A15,  47B32,  47B38
Mots clés : espaces de Hardy, noyaux reproduisants, complétude, systèmes d'exponentielles
@article{AIF_2002__52_2_661_0,
     author = {Fricain, Emmanuel},
     title = {Compl\'etude des noyaux reproduisants dans les espaces mod\`eles},
     journal = {Annales de l'Institut Fourier},
     pages = {661--686},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {52},
     number = {2},
     year = {2002},
     doi = {10.5802/aif.1897},
     zbl = {1032.46040},
     mrnumber = {1906486},
     language = {fr},
     url = {http://www.numdam.org/articles/10.5802/aif.1897/}
}
Fricain, Emmanuel. Complétude des noyaux reproduisants dans les espaces modèles. Annales de l'Institut Fourier, Tome 52 (2002) no. 2, pp. 661-686. doi : 10.5802/aif.1897. http://www.numdam.org/articles/10.5802/aif.1897/

[AC70] P. Ahern; D. Clark Radial limits and invariant subspaces, Amer. of Math., Volume 2 (1970), pp. 332-342 | Article | MR 262511 | Zbl 0197.39202

[BM62] A. Beurling; P. Malliavin On Fourier transforms of measures with compact support, Acta Math., Volume 107 (1962), pp. 291-309 | Article | MR 147848 | Zbl 0127.32601

[BM67] A. Beurling; P. Malliavin On the closure of characters and the zeros of entire functions, Acta Math., Volume 118 (1967), pp. 79-93 | Article | MR 209758 | Zbl 0171.11901

[Cob66] L.A. Coburn Weyl's theorem for nonnormal operators, Michigan Math J., Volume 13 (1966), pp. 285-288 | Article | MR 201969 | Zbl 0173.42904

[CS97] K.C. Chan; S.M. Seubert Reducing subspaces of compressed analytic Toeplitz operators on the Hardy space, Integr. Equa. Oper. Theory, Volume 28 (1997), pp. 147-157 | Article | MR 1451498 | Zbl 0907.47016

[Dan94] N. Danikas On an identity theorem in the Nevanlinna class N, J. Approx. Theory, Volume 77 (1994), pp. 184-190 | Article | MR 1275934 | Zbl 0804.30031

[DSS70] R.G. Douglas; H.S. Shapiro; A.L. Shields Cyclic vectors and invariant subspaces for the backward shift operator, Ann. Inst. Fourier (Grenoble) (1970), pp. 37-76 | Article | Numdam | MR 270196 | Zbl 0186.45302

[Dur70] P. Duren Theory of H p Spaces, Academic Press, New-York, 1970 | MR 268655 | Zbl 0215.20203

[Dya] K.M. Dyakonov Kernels of Toeplitz operators via Bourgain's factorization theorem (A paraître dans J. Funct. Anal.) | Zbl 0947.47019

[Dya92] K.M. Dyakonov Interpolating functions of minimal norm, star-invariant subspaces, and kernels of Toeplitz operators, Proc. Amer. Math. Soc., Volume 116 (1992) no. 4, pp. 1007-1013 | MR 1100649 | Zbl 0769.30022

[Dya94a] K.M. Dyakonov Entire functions of exponentials type and model subspaces in H p , Journal of Math. Sciences, Volume 71 (1994) no. 1, pp. 2222-2233 | Article | MR 1111913

[Dya94b] K.M. Dyakonov Smooth functions in the range of a Hankel operator, Indiana Univ. Math. J., Volume 43 (1994), pp. 805-838 | Article | MR 1305948 | Zbl 0821.30026

[Fri99] E. Fricain Propriétés géométriques des suites de noyaux reproduisants dans les espaces modèles (1999) (Thèse de Doctorat, Université Bordeaux I)

[Gar81] J.B. Garnett Bounded analytic functions, Academic Press, New York, 1981 | MR 628971 | Zbl 0469.30024

[GM70] V.I. Gurarii; M.A. Meletidi Stability of completeness of sequences in Banach spaces (Russian), Bull. Acad. Pol. Sci., Volume 18 (1970), pp. 533-536 | MR 278039 | Zbl 0204.43304

[Hay85] E. Hayashi The solution sets of extremal problems in H 1 , Proc. Amer. Math. Soc., Volume 93 (1985), pp. 690-696 | MR 776204 | Zbl 0565.30031

[Hay86] E. Hayashi The kernel of a Toeplitz operator, Integral Equations Operator Theory, Volume 9 (1986), pp. 588-591 | Article | MR 853630 | Zbl 0636.47023

[Hay90] E. Hayashi Classification of nearly invariant subspaces of the backward shift, Proc. Amer. Math. Soc., Volume 110 (1990), pp. 441-448 | Article | MR 1019277 | Zbl 0716.30028

[Hay98] W.K. Hayman Identity theorems for functions of bounded characteristic, J. London Math. Soc., Volume 58 (1998) no. 1, pp. 127-140 | Article | MR 1666094 | Zbl 0922.30005

[HNP81] S. Hruschev; N. Nikolski; B. Pavlov Unconditional bases of exponentials and reproducing kernels (Lecture Notes in Math.), Volume 864 (1981), pp. 214-335 | Zbl 0466.46018

[HV74] V.P. Havin; S.A. Vinogradov Free interpolation in H and in some other function classes, Seminarov Mat. Inst. Steklova (LOMI) (Zapiski Nauchn. (Russian)), Volume 47 (1974), pp. 15-54 | Zbl 0355.41005

[HV74] V.P. Havin; S.A. Vinogradov; 2 Free interpolation in H and in some other function classes, Seminarov Mat. Inst. Steklova (LOMI) (J. Soviet Math. (English transl.)), Volume 9 (1978), pp. 137-171 | Zbl 0398.41002

[Kat67] T. Kato Perturbation theory for linear operators, Grundlehren der Math. Wissenschaften, 144, Springer Verlag, Berlin-Heidelberg-New-York, 1967 | Zbl 0342.47009

[Kha63] S.Ya. Khavinson Extremal problems for bounded analytic functions with interior side conditions, Russ. Math. Survey, Volume 18 (1963) no. 2, pp. 21-96 | Zbl 0149.03302

[Koo96] P. Koosis Leçons sur le Théorème de Beurling et Malliavin, Les Publications CRM, Montréal (1996) | MR 1430571 | Zbl 0869.30023

[KT90] I.F. Krasichkov-Ternovskii An interpretation of the Beurling-Malliavin theorem on the radius of completeness, Math. USSR Sbornik, Volume 66 (1990) no. 2, pp. 405-429 | Article | MR 993233 | Zbl 0698.30003

[Lev40] N. Levinson Gap and density Theorems, Amer. Math. Soc., 26, Colloquium Publ., New-York, 1940 | MR 3208 | Zbl 0145.08003

[LS71] M. Lee; D.E. Sarason The spectra of some Toeplitz operators, J. Math. Anal. Appl., Volume 33 (1971), pp. 529-543 | Article | MR 275203 | Zbl 0185.38401

[LS97] Y.I. Lyubarskii; K. Seip A uniqueness theorem for bounded analytic functions, Bull. London Math. Soc., Volume 29 (1997), pp. 49-52 | Article | MR 1416406 | Zbl 0889.30005

[Nik86] N.K. Nikolskii Treatise on the shift operator, Grundlehren der Math. Wissenschaften, 273, Springer Verlag, Berlin-Heidelberg-New-York, 1986 | MR 827223 | Zbl 0587.47036

[Red68] R.M. Redheffer Elementary remarks on completeness, Duke Math. J., Volume 35 (1968) no. 1, pp. 103-116 | Article | MR 225090 | Zbl 0195.42502

[Red77] R.M. Redheffer Completeness of sets of complex exponentials, Adv. in Math., Volume 24 (1977), pp. 1-62 | Article | MR 447542 | Zbl 0358.42007

[Sar94] D. Sarason Kernels of Toeplitz operators, Oper. Theory, Adv. Appl., Volume 71 (1994), pp. 153-164 | MR 1300218 | Zbl 0818.47025

[You81] R.M. Young On complete biorthogonal systems, Proceedings of the Amer. Soc., Volume 83 (1981) no. 3, pp. 537-540 | Article | MR 627686 | Zbl 0484.42009