Some remarks on Koszul algebras and quantum groups
Annales de l'Institut Fourier, Tome 37 (1987) no. 4, p. 191-205
La catégorie des algèbres quadratiques est munie d’une structure tensorielle. Ceci permet de construire des algèbres de Hopf du type “(semi) groupes quantiques”.
The category of quadratic algebras is endowed with a tensor structure. This allows us to construct a class of Hopf algebras studied recently under the name of quantum (semi) groups.
@article{AIF_1987__37_4_191_0,
     author = {Manin, Yu. I.},
     title = {Some remarks on Koszul algebras and quantum groups},
     journal = {Annales de l'Institut Fourier},
     publisher = {Imprimerie Durand},
     address = {28 - Luisant},
     volume = {37},
     number = {4},
     year = {1987},
     pages = {191-205},
     doi = {10.5802/aif.1117},
     zbl = {0625.58040},
     mrnumber = {89e:16022},
     language = {en},
     url = {http://http://www.numdam.org/item/AIF_1987__37_4_191_0}
}
Manin, Yu. I. Some remarks on Koszul algebras and quantum groups. Annales de l'Institut Fourier, Tome 37 (1987) no. 4, pp. 191-205. doi : 10.5802/aif.1117. http://www.numdam.org/item/AIF_1987__37_4_191_0/

[1] V. G. Drinfeld, Quantum groups, Zap. Naučn. sem. LOMI, vol. 155 (1986), 18-49 (in russian). | MR 88f:17017 | Zbl 0617.16004

[2] S. B. Priddy, Koszul resolutions, Trans. AMS, 152-1 (1970), 39-60. | MR 42 #346 | Zbl 0261.18016

[3] C. Löfwall, On the subalgebra generated by one-dimensional elements in the Yoneda Ext-algebra, Springer Lecture Notes in Math., vol. 1183 (1986), 291-338. | MR 88f:16030 | Zbl 0595.16020

[4] V. V. Lyubashenko, Hopf algebras and vector-symmetries, Uspekhi Mat. Nauk, 41-5 (1986), 185-186 (in russian). | MR 88c:58007 | Zbl 0649.16008

[5] P. Deligne, J. Milne, Tannakian categories, Springer lecture Notes in Math., vol. 900 (1982), 101-228. | MR 84m:14046 | Zbl 0477.14004

[6] A. A. Beilinson, V. Ginsburg, Mixed categories, Ext-duality and representations, 1986, preprint.

[7] V. G. Drinfeld, On quadratic commutation relations in the quasiclassic limit, in : Mat. Fizika i Funke. Analiz, Kiev, Naukova Dumka (1986), 25-33 (in russian). | MR 89c:58048 | Zbl 0783.58025