Holonomic 𝒟-modules with Betti structure  [ 𝒟-modules holonomes munis d’une structure de Betti ] (2014)


Mochizuki, Takuro
Mémoires de la Société Mathématique de France, Tome 138-139 (2014) viii-205 p
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consulter l'article sur le site de la revue
doi : 10.24033/msmf.448
URL stable : http://www.numdam.org/item?id=MSMF_2014_2_138-139__1_0

Bibliographie

[1] Y. André, Structure des connexions méromorphes formelles de plusieurs variables et semi-continuité de l’irrégularité, Invent. Math. 170 (2007), no. 1, 147–198. MR 2336081

[2] C. Banica, Le complété formel d’un espace analytique le long d’un sous-espace: un théorème de comparaison, Manuscripta Math. 6 (1972), 207–244. Zbl 0231.32004 | | MR 301231

[3] A. Beilinson, On the derived category of perverse sheaves, in K-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math. 1289, Springer, Berlin, (1987), 27–41. MR 923133

[4] A. Beilinson, How to glue perverse sheaves, in K-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math. 1289, Springer, Berlin, (1987), 42–51. Zbl 0651.14009 | MR 923134

[5] A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque 100 (1982), 5–171. MR 751966

[6] A. Beilinson, S. Bloch, P. Deligne, H. Esnault, Periods for irregular connections on curves, preprint.

[7] J. Bingener, Über Formale Komplexe Räume, Manuscripta Math. 24 (1978), 253–293. Zbl 0381.32015 | | MR 492367

[8] S. Bloch, H. Esnault, Homology for irregular connections, J. théorie des nombres, Bordeaux 16 (2004), 357–371. Numdam | Zbl 1075.14016 | | MR 2143558

[9] A. Borel, P. O. Grivel, B. Kaup, A. Haefliger, B. Malgrange, F. Ehlers, Algebraic 𝒟-modules, Perspectives in Mathematics 2, Academic Press, Inc., Boston, MA, 1987. MR 882000

[10] A. D’Agnolo, M. Kashiwara, On a reconstruction theorem for holonomic systems, Proc. Japan Acad. Ser. A Math. Sci. 88 (2012), 178–183. Zbl 1266.32012 | MR 3004235

[11] A. D’Agnolo, M. Kashiwara, Riemann-Hilbert correspondence for holonomic D-modules; arXiv:1311.2374. MR 3502097

[12] P. Deligne, Équations différentielles à points singuliers réguliers, Lectures Notes in Maths., vol. 163, Springer, 1970. Zbl 0244.14004 | MR 417174

[13] P. Deligne, B. Malgrange, J-P. Ramis, Singularités irrégulières, Documents mathématiques 5, Société Mathématique de France, 2007. MR 2387754

[14] R. Hartshorne, On the De Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 45 (1975), 5–99. Numdam | Zbl 0326.14004 | | MR 432647

[15] R. Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, (1977). Zbl 0367.14001 | MR 463157

[16] M. Hien, Periods for flat algebraic connections, Invent. Math. 178 (2009), 1–22. Zbl 1190.14019 | MR 2534091

[17] R. Hotta, K. Takeuchi and T. Tanisaki, D-modules, perverse sheaves, and representation theory, Progress in Mathematics 236, Birkhäuser Boston, Inc., Boston, MA, 2008. Zbl 1136.14009 | MR 2357361

[18] B. Iversen, Cohomology of sheaves, Springer-Verlag, Berlin, 1986. Zbl 1272.55001 | MR 842190

[19] M. Kashiwara, On the maximally overdetermined system of linear differential equations I, Publ. Res. Inst. Math. Sci. 10 (1974/75), 563–579. Zbl 0313.58019 | MR 370665

[20] M. Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci. 20 (1984), 319–365. Zbl 0566.32023 | MR 743382

[21] M. Kashiwara, Vanishing cycle sheaves and holonomic systems of differential equations, in Algebraic geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math. 1016, Springer, Berlin, (1983), 134–142. Zbl 0566.32022 | MR 726425

[22] M. Kashiwara, D-modules and microlocal calculus, Translations of Mathematical Monographs, 217, Iwanami Series in Modern Mathematics, American Mathematical Society, 2003. MR 1943036

[23] M. Kashiwara and P. Schapira, Sheaves on manifolds, Springer-Verlag, Berlin, 1990. MR 1074006

[24] M. Kashiwara, P. Schapira, Ind-sheaves, Astérisque 271 (2001). Zbl 0993.32009 | MR 1827714

[25] L. Katzarkov, M. Kontsevich and T. Pantev, Hodge theoretic aspects of mirror symmetry, in From Hodge theory to integrability and TQFT tt*-geometry, Proc. Sympos. Pure Math. 78, Amer. Math. Soc., Providence, RI, (2008), 87–174; math:0806.0107. Zbl 1206.14009

[26] K. Kedlaya, Good formal structures for flat meromorphic connections, I: Surfaces, Duke Math. J. 154 (2010), 343–418; arXiv:0811.0190. Zbl 1204.14010 | MR 2682186

[27] K. Kedlaya. Good formal structures for flat meromorphic connections, II: Excellent schemes, J. Amer. Math. Soc. 24 (2011), 183–229; arXiv:1001.0544. Zbl 1282.14037 | MR 2726603

[28] M. Kontsevich, Holonomic D-modules and positive characteristic, Japan J. Math. 4 (2009), 1–25. Zbl 1215.14014 | MR 2491280

[29] B. A. Krasnov, Formal Modifications. Existence Theorems for modifications of complex manifolds, Math. USSR. Izvestija 7 (1973), 847–881. Zbl 0291.32018 | MR 330504

[30] G. Laumon, Transformation de Fourier, constantes d’équations fonctionnelles et conjecture de Weil, Inst. Hautes Études Sci. Publ. Math. 65 (1987), 131–210. Numdam | Zbl 0641.14009 | | MR 908218

[31] A. Levelt, Jordan decomosition for a class of singular differential operators, Ark. Math. 13 (1975), 1–27. Zbl 0305.34008 | MR 500294

[32] R. Macpherson, K. Vilonen, Elementary construction of perverse sheaves, Invent. Math. 84 (1986), 403–435. Zbl 0597.18005 | | MR 833195

[33] H. Majima, Asymptotic analysis for integrable connections with irregular singular points, Lecture Notes in Mathematics 1075, Springer-Verlag, Berlin, 1984. Zbl 0546.58003 | MR 757897

[34] B. Malgrange, Ideals of differentiable functions, Tata Institute of Fundamental Research Studies in Mathematics 3, Tata Institute of Fundamental Research, Bombay, Oxford University Press, London, 1967. MR 212575

[35] B. Malgrange, La classification des connexions irrégulières à une variable, in Mathematics and physics (Paris, 1979/1982), Progr. Math., 37, Birkhäuser Boston, Boston, MA, (1983), 381–399. MR 728430

[36] B. Malgrange, Polynômes de Bernstein-Sato et cohomologie évanescente, in Analysis and topology on singular spaces, II, III (Luminy, 1981), Astérisque 101–102 (1983), 243–267. Zbl 0528.32007 | MR 737934

[37] B. Malgrange, Équations différentielles à coefficients polynomiaux, Progress in Mathematics 96, Birkhäuser, Boston, 1991. MR 1117227

[38] B. Malgrange, Connexions méromorphies 2, Le réseau canonique, Invent. Math. 124 (1996), 367–387. MR 1369422

[39] B. Malgrange, On irregular holonomic D-modules, Éléments de la théorie des systèmes différentiels géométriques, 391–410, Sémin. Congr. 8, Soc. Math. France, Paris, 2004. Zbl 1077.32017 | MR 2087577

[40] Z. Mebkhout, Une équivalence de catégories. Compositio Math. 51 (1984), 51–62. Numdam | Zbl 0566.32021 | | MR 734784

[41] Z. Mebkhout, Une autre équivalence de catégories, Compositio Math. 51 (1984), 63–88. Numdam | Zbl 0566.32021 | | MR 734785

[42] Z. Mebkhout, Le formalisme des six opérations de Grothendieck pour les 𝒟 X -modules cohérents, Hermann, Paris, 1989. Zbl 0686.14020 | MR 1008245

[43] Z. Mebkhout, Le théorème de positivité de l’irrégularité pour les 𝒟 X -modules, in The Grothendieck Festschrift, Vol. III, 83–132, Progr. Math. 88, Birkhäuser Boston, Boston, MA, 1990. MR 1106912

[44] T. Mochizuki, Good formal structure for meromorphic flat connections on smooth projective surfaces, in Algebraic Analysis and Around, Advanced Studies in Pure Mathematics 54 (2009), 223–253; math:0803.1346. Zbl 1183.14027 | MR 2499558

[45] T. Mochizuki, On Deligne-Malgrange lattices, resolution of turning points and harmonic bundles, Ann. Inst. Fourier (Grenoble) 59 (2009), 2819–2837. Numdam | Zbl 1202.32008 | | MR 2649340

[46] T. Mochizuki, Note on the Stokes structure of Fourier transform, Acta Math. Vietnam 35 (2010), 107–158 Zbl 1201.32016 | MR 2642166

[47] T. Mochizuki, Wild harmonic bundles and wild pure twistor D-modules, Astérisque 340 (2011); math:0803.1344. Zbl 1245.32001 | MR 2919903

[48] T. Mochizuki, Asymptotic behaviour of variation of pure polarized TERP structures, Publ. Res. Inst. Math. Sci. 47 (2011), 419–534; math:0811.1384. Zbl 1231.32013 | MR 2849639

[49] T. Mochizuki, The Stokes structure of good meromorphic flat bundle, J. Inst. Math. Jussieu 10 (2011), 675–712. Zbl 1227.32011 | MR 2806465

[50] T. Mochizuki, Mixed twistor D-modules; arXiv:1104.3366. MR 3381953

[51] G. Morando, An existence theorem for tempered solutions of D-modules on complex curves, Publ. Res. Inst. Math. Sci. 43 (2007), 625–659. Zbl 1155.32018 | MR 2361790

[52] C. Sabbah, Équations différentielles à points singuliers irréguliers et phénomène de Stokes en dimension 2, Astérisque 263, Société Mathématique de France, Paris, 2000. MR 1741802

[53] C. Sabbah, Polarizable twistor D-modules, Astérisque 300, Société Mathématique de France, Paris, (2005). Zbl 1085.32014 | MR 2156523

[54] C. Sabbah, Introduction to Stokes structures, Lecture Notes in Mathematics 2060 Springer, Heidelberg, 2013; arXiv:0912.2762. Zbl 1260.34002 | MR 2978128

[55] M. Saito, Modules de Hodge polarisables, Publ. RIMS 24 (1988), 849–995. Zbl 0691.14007 | MR 1000123

[56] M. Saito, Duality for vanishing cycle functors, Publ. Res. Inst. Math. Sci. 25 (1989), 889–921. Zbl 0712.32011 | MR 1045997

[57] M. Saito, Mixed Hodge modules, Publ. RIMS 26 (1990), 221–333. Zbl 0727.14004 | MR 1047415

[58] M. Saito, Induced D-modules and differential complexes, Bull. Soc. Math. France 117 (1989), 361–387. Numdam | Zbl 0705.32005 | | MR 1020112

[59] J.-L. Verdier, Extension of a perverse sheaf over a closed subspace, in Differential systems and singularities (Luminy, 1983), Astérisque 130 (1985), 210–217. MR 804054