Projections in several complex variables  [ Projecteurs en plusieurs variables complexes ] (2010)


Hsiao, Chin-Yu
Mémoires de la Société Mathématique de France, Tome 123 (2010) viii-136 p
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consulter l'article sur le site de la revue
doi : 10.24033/msmf.435
URL stable : http://www.numdam.org/item?id=MSMF_2010_2_123__1_0

Bibliographie

[1] R. Beals & P. C. GreinerCalculus on Heisenberg manifolds, Annals of Math. Studies, vol. 119, Princeton Univ. Press, 1988. Zbl 0654.58033 | MR 953082

[2] R. Berman, B. Berndtsson & J. Sjöstrand« A direct approach to Bergman kernel asymptotics for positive line bundles », Ark. Mat. 46 (2008), p. 197–217. Zbl 1161.32001 | MR 2430724

[3] R. Berman & J. Sjöstrand« Asymptotics for Bergman-Hodge kernels for high powers of complex line bundles », arXiv:math/0511158. Zbl 1207.32012 | MR 2789717

[4] A. BoggessCR manifolds and the tangential Cauchy-Riemann complex, Studies in Advanced Math., CRC Press, 1991. Zbl 0760.32001 | MR 1211412

[5] D. Catlin« The Bergman kernel and a theorem of Tian », in Analysis and geometry in several complex variables (Katata, 1997), Trends Math., Birkhäuse, 1999, p. 1–23. Zbl 0941.32002 | MR 1699887

[6] S.-C. Chen & M.-C. ShawPartial differential equations in several complex variables, AMS/IP Studies in Advanced Math., vol. 19, Amer. Math. Soc., 2001. MR 1800297

[7] X. Dai, K. Liu & X. Ma« On the asymptotic expansion of Bergman kernel », J. Differential Geom. 72 (2006), p. 1–41; announced in C. R. Math. Acad. Sci. Paris 339 (2004), no. 3, 193–198. Zbl 1057.58018

[8] J. J. DuistermaatFourier integral operators, Progress in Mathmatics, vol. 130, Birkhäuser Boston Inc., 1996. MR 1362544

[9] C. Fefferman« The Bergman kernel and biholomorphic mappings of pseudoconvex domains », Invent. Math. 26 (1974), p. 1–65. Zbl 0289.32012 | | MR 350069

[10] G. B. Folland & J. J. KohnThe Neumann problem for the Cauchy-Riemann complex, Annals of Math. Studies, vol. 75, Princeton Univ. Press, 1972. MR 461588

[11] P. C. Greiner & E. M. SteinEstimates for the ¯-Neumann problem, Mathematical Notes, vol. 19, Princeton Univ. Press, 1977. Zbl 0354.35002 | MR 499319

[12] A. Grigis & J. SjöstrandMicrolocal analysis for differential operators, London Mathematical Society Lecture Note Series, vol. 196, Cambridge Univ. Press, 1994. Zbl 0804.35001 | MR 1269107

[13] L. Hörmander« L 2 estimates and existence theorems for the ¯ operator », Acta Math. 113 (1965), p. 89–152. Zbl 0158.11002 | MR 179443

[14] —, « Fourier integral operators. I », Acta Math. 127 (1971), p. 79–183. Zbl 0212.46601 | MR 388463

[15] —, The analysis of linear partial differential operators. III, Grund. Math. Wiss., vol. 274, Springer, 1985.

[16] —, The analysis of linear partial differential operators. IV, Grund. Math. Wiss., vol. 275, Springer, 1985.

[17] —, An introduction to complex analysis in several variables, third éd., North-Holland mathematical library, vol. 7, North-Holland Publishing Co., 1990.

[18] —, The analysis of linear partial differential operators. I, Classics in Mathematics, Springer, 2003.

[19] —, « The null space of the ¯-neumann operator », Ann. Inst. Fourier 54 (2004), p. 1305–1369. Numdam | Zbl 1083.32033 | | MR 2127850

[20] C.-Y. Hsiao« Projections in several complex variables », Thèse, École polytechnique, 2008, available at http://tel.archives-ouvertes.fr/tel-00332787. Zbl 1229.32002

[21] J. KelleyGeneral topology, Graduate Texts in Math., vol. 27, Springer, 1975. MR 370454

[22] K. KodairaComplex manifolds and deformation of complex structures, classics in mathematics, Springer, 2005. MR 2109686

[23] J. J. Kohn« Harmonic integrals on strongly pseudo-convex manifolds. I », Ann. of Math. 78 (1963), p. 112–148. Zbl 0161.09302 | MR 153030

[24] —, « Harmonic integrals on strongly pseudo-convex manifolds. II », Ann. of Math. 79 (1964), p. 450–472. Zbl 0178.11305 | MR 208200

[25] X. Ma & G. Marinescu« The first coefficients of the asymptotic expansion of the Bergman kernel of the spin c Dirac operator », Internat. J. Math. 17 (2006), p. 737–759. Zbl 1106.58018 | MR 2246888

[26] —, Holomorphic morse inequalities and bergman kernels, Progress in Math., vol. 254, Birkhäuser, 2007. Zbl 1135.32001

[27] —, « Generalized Bergman kernels on symplectic manifolds », Adv. Math. 217 (2008), p. 1756–1815, announced in C. R. Math. Acad. Sci. Paris 339 (2004), no. 7, 493–498. Zbl 1141.58018 | MR 2382740

[28] A. Melin & J. Sjöstrand« Fourier integral operators with complex-valued phase functions », in Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974), Lecture Notes in Math., vol. 459, Springer, 1975, p. 120–223. MR 431289

[29] A. Menikoff & J. Sjöstrand« On the eigenvalues of a class of hypoelliptic operators », Math. Ann. 235 (1978), p. 55–85. Zbl 0375.35014 | | MR 481627

[30] L. B. De Monvel« Comportement d’un opérateur pseudo-différentiel sur une variété à bord. I et II », J. Analyse Math. 17 (1966), p. 241–304. Zbl 0161.07902

[31] —, « Boundary problems for pseudo-differential operators », Acta Math. 126 (1971), p. 11–51. Zbl 0206.39401 | MR 407904

[32] —, « Hypoelliptic operators with double characteristics and related pseudo-differential operators », Comm. Pure Appl. Math. 27 (1974), p. 585–639. Zbl 0294.35020 | MR 370271

[33] L. B. De Monvel & V. GuilleminThe spectral theory of Toeplitz operators, Annals of Math. Studies, vol. 99, Princeton Univ. Press, 1981. Zbl 0469.47021 | MR 620794

[34] L. B. De Monvel & J. Sjöstrand« Sur la singularité des noyaux de Bergman et de Szegő », Astérisque 34-35 (1976), p. 123–164. Zbl 0344.32010 | MR 590106

[35] J. Morrow & K. KodairaComplex manifolds, Athena series; selected topics in mathematics, Holt, Rinehart and Winston, 1971. Zbl 0325.32001 | MR 302937

[36] J. Sjöstrand« Parametrices for pseudodifferential operators with multiple characteristics », Ark. Mat. 12 (1974), p. 85–130. Zbl 0317.35076 | MR 352749

[37] M. TaylorPartial Differential Equations. II, Applied mathematical sciences, vol. 116, Springer, 1996. MR 1395149

[38] S. Zelditch« Szegő kernels and a theorem of Tian », Int. Math. Res. Not. 1998 (1998), p. 317–331. Zbl 0922.58082 | MR 1616718