Creation of fermions by rotating charged black holes  [ Création de fermions par des trous noirs chargés en rotation ] (2009)


Häfner, Dietrich
Mémoires de la Société Mathématique de France, Tome 117 (2009) 160 p
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consulter l'article sur le site de la revue
doi : 10.24033/msmf.429
URL stable : http://www.numdam.org/item?id=MSMF_2009_2_117__1_0

Bibliographie

[1] A. Bachelot« Gravitational scattering of electromagnetic field by a Schwarzschild black hole », Ann. Inst. Henri Poincaré, Phys. Théor. 54 (1991), p. 261–320. Numdam | Zbl 0743.53037 | | MR 1122656

[2] —, « Asymptotic completeness for the Klein-Gordon equation on the Schwarzschild metric », Ann. Inst. Henri Poincaré, Phys. Théor. 61 (1994), p. 411–441. Numdam | Zbl 0809.35141 | | MR 1311537

[3] —, « Quantum vacuum polarization at the black-hole horizon », Ann. Inst. Henri Poincaré, Phys. Théor. 67 (1997), p. 181–222. Numdam | Zbl 0897.53064 | | MR 1472567

[4] —, « Scattering of scalar fields by spherical gravitational collapse », J. Math. Pures Appl. 76 (1997), p. 155–210. Zbl 0872.53066 | MR 1432372

[5] —, « The Hawking effect », Ann. Inst. Henri Poincaré, Phys. Théor. 70 (1999), p. 41–99. Numdam | Zbl 0919.53034 | | MR 1671210

[6] —, « Creation of fermions at the charged black-hole horizon », Ann. Henri Poincaré 1 (2000), p. 1043–1095. Zbl 0977.83045 | MR 1809793

[7] —, « Superradiance and scattering of the charged Klein-Gordon field by a step-like electrostatic potential », J. Math. Pures Appl. 83 (2004), p. 1179–1239. Zbl 1063.81095 | MR 2092306

[8] A. N. Bernal & M. Sanchez« On smooth hypersurfaces and Geroch’s splitting theorem », Comm. Math. Phys. 243 (2003), p. 461–470. Zbl 1085.53060 | MR 2029362

[9] —, « Smoothness of time functions and the metric splitting of globally hyperbolic space-times », Comm. Math. Phys. 257 (2005), p. 43–50. Zbl 1081.53059 | MR 2163568

[10] S. De Bièvre, P. Hislop & I. Sigal« Scattering theory for the wave equation on non-compact manifolds », Rev. Math. Phys. 4 (1992), p. 575–618. Zbl 0778.58064 | MR 1197551

[11] O. Bratelli & D. W. RobinsonOperator algebras and quantum statistical mechanics 2, Springer Verlag, 1997. MR 1441540

[12] B. CarterBlack hole equilibrium states, black holes/ les astres occlus, École d’été de Physique théorique, Les Houches, 1972, pp.57–214, Gordon and Breach, 1973. MR 465047

[13] S. ChandrasekharThe mathematical theory of black holes, Oxford Univ. Press, 1983. Zbl 0511.53076 | MR 700826

[14] T. Daudé« Scattering of charged Dirac fields by a Reissner-Nordström black hole », Preprint Université Bordeaux 1, 2004, Ph.D. thesis Université Bordeaux 1 (2004), Chapter 3, available online at http://tel.archives-ouvertes.fr/tel-00011974/en/.

[15] —, « Scattering of charged Dirac fields by a Kerr-Newman black hole », Preprint Université Bordeaux 1, 2004, Ph.D. thesis Université Bordeaux 1 (2004), Chapter 4, available online at http://tel.archives-ouvertes.fr/tel-00011974/en/.

[16] J. Dimock« Algebras of local observables on a manifold », Comm. Math. Phys. 77 (1980), p. 219–228. Zbl 0455.58030 | MR 594301

[17] —, « Dirac quantum fields on a manifold », Trans. Amer. Math. Soc. 269 (1982), p. 133–147. Zbl 0518.58018 | MR 637032

[18] —, « Scattering for the wave equation on the Schwarzschild metric », Gen. Relativ. Gravitation 17 (1985), p. 353–369. Zbl 0618.35088 | MR 788801

[19] J. Dimock & B. S. Kay« Scattering for massive scalar fields on Coulomb potentials and Schwarzschild metrics », Classical Quantum Gravity 3 (1986), p. 71–80. Zbl 0591.35080 | MR 821837

[20] —, « Classical and quantum scattering theory for linear scalar fields on the Schwarzschild metric I », Ann. Phys. 175 (1987), p. 366–426. Zbl 0628.53080 | MR 887979

[21] —, « Classical and quantum scattering theory for linear scalar fields on the Schwarzschild metric II », J. Math. Phys. 27 (1986), p. 2520–2525. Zbl 0608.53065 | MR 857397

[22] F. Finster, N. Kamran, J. Smoller & S.-T. Yau« An integral spectral representation of the propagator for the wave equation in the Kerr geometry », Comm. Math. Phys. 260 (2005), p. 257–298. Zbl 1089.83017 | MR 2177321

[23] S. J. Flechter & A. W. C. Lun« The Kerr spacetime in generalized Bondi-Sachs coordinates », Class. Quantum Grav. 20 (2003), p. 4153–4167. Zbl 1048.83014 | MR 2013223

[24] R. P. Geroch« Spinor structure of space-times in general relativity I », J. Math. Phys. 9 (1968), p. 1739–1744. Zbl 0165.29402 | MR 234703

[25] —, « Spinor structure of space-times in general relativity II », J. Math. Phys. 11 (1970), p. 342–348. Zbl 0199.28303 | MR 255217

[26] —, « The domain of dependence », J. Math. Phys. 11 (1970), p. 437–449. Zbl 0189.27602 | MR 270697

[27] D. Häfner« Complétude asymptotique pour l’équation des ondes dans une classe d’espaces-temps stationnaires et asymptotiquement plats », Ann. Inst. Fourier 51 (2001), p. 779–833. Zbl 0981.35031 | | MR 1838466

[28] —, « Sur la théorie de la diffusion pour l’équation de Klein-Gordon dans la métrique de Kerr », Dissertationes Mathematicae 421 (2003), 102pp.

[29] D. Häfner & J.-P. Nicolas« Scattering of massless Dirac fields by a Kerr black hole », Rev. Math. Phys. 16 (2004), p. 29–123. Zbl 1064.83036 | MR 2047861

[30] S. W. Hawking« Particle creation by black holes », Comm. Math. Phys. 43 (1975), p. 199–220. MR 381625

[31] L. HörmanderThe Analysis of Linear Partial Differential Operators, Vol. I–IV, Springer, 1985. MR 781537

[32] —, « A remark on the characteristic Cauchy problem », J. Funct. Anal. 93 (1990), p. 270–277. Zbl 0724.35060 | MR 1073287

[33] W. M. Jin« Scattering of massive Dirac fields on the Schwarzschild black hole spacetime », Classical Quantum Gravity 15 (1998), p. 3163–3175. Zbl 0942.83031 | MR 1662384

[34] W. Kinnersley« Type D vacuum metrics », J. Math. Phys. 10 (1969), p. 1195–1203. Zbl 0182.30202 | MR 247861

[35] L. J. Mason & J.-P. Nicolas« Conformal scattering and the Goursat problem », J. Hyperbolic Differ. Equ. 1 (2004), p. 197–233. Zbl 1074.83019 | MR 2070126

[36] F. Melnyk« Scattering on Reissner-Nordstrøm metric for massive charged spin 1 2 fields », Ann. Henri Poincaré 4(5) (2003), p. 813–846. Zbl 1106.83015 | MR 2016993

[37] —, « The Hawking effect for spin 1 2 fields », Comm. Math. Phys. 244 (2004), p. 483–525. Zbl 1062.83040 | MR 2034486

[38] J.-P. Nicolas« Scattering of linear Dirac fields by a spherically symmetric black hole », Ann. Inst. Henri Poincaré, Phys. Théor. 62 (1995), p. 145–179. Numdam | Zbl 0826.53072 | | MR 1317184

[39] —, « Global exterior Cauchy problem for spin 3 2 zero rest-mass fields in the Schwarzchild space-time », Comm. Partial Differential Equations 22 (1997), p. 465–502.

[40] —, « Dirac fields on asymptotically flat space-times », Dissertationes Mathematicae 408 (2002), 85pp. Zbl 1011.83015 |

[41] —, « On Lars Hörmander’s remark on the characteristic Cauchy problem », Ann. Inst. Fourier 56 (2006), p. 517–543. Numdam | Zbl 1124.35037 | | MR 2244222

[42] B. O’NeillThe geometry of Kerr black holes, A.K. Peters, Wellesley, 1995. Zbl 0828.53078 | MR 1328643

[43] A. PazySemigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer Verlag, 1983. Zbl 0516.47023 | MR 710486

[44] R. Penrose & W. RindlerSpinors and space-time, vol. I, Cambridge monographs on mathematical physics, Cambridge Univ. Press, 1984. MR 776784

[45] E. Stiefel« Richtungsfelder und Fernparallelismus in n-dimensionalen Mannigfaltigkeiten », Comment. Math. Helv. 8 (1936), p. 305–353. Zbl 62.0662.02 | | MR 1509530

[46] B. ThallerThe Dirac equation, Texts and monographs in mathematical physics, Springer Verlag, 1992. Zbl 0881.47021 | MR 1219537

[47] R. M. Wald« On particle creation by black holes », Comm. Math. Phys. 45 (1975), p. 9–34. MR 391814

[48] —, General relativity, The University of Chicago Press, 1984. Zbl 0549.53001