Propriétés de Lefschetz automorphes pour les groupes unitaires et orthogonaux (2006)


Bergeron, Nicolas
Mémoires de la Société Mathématique de France, Tome 106 (2006) vi-125 p doi : 10.24033/msmf.418
URL stable : http://www.numdam.org/item?id=MSMF_2006_2_106__1_0

Bibliographie

[1] J. Arthur« Unipotent automorphic representations : conjectures », Astérisque (1989), no. 171-172, p. 13–71, Orbites unipotentes et représentations, II. Zbl 0728.22014 | MR 1021499

[2] N. Bergeron« Lefschetz properties for arithmetic real and complex hyperbolic manifolds », Int. Math. Res. Not. (2003), no. 20, p. 1089–1122. Zbl 1036.11021 | MR 1963482

[3] N. Bergeron« Tentative d’épuisement de la cohomologie d’une variété de shimura par restriction à ses sous-variétés », arXiv :math.NT/0403407 v1 24 Mar 2004. MR 2480852

[4] —, « Premier nombre de Betti et spectre du laplacien de certaines variétés hyperboliques », Enseign. Math. (2) 46 (2000), no. 1-2, p. 109–137. MR 1769939

[5] —, « Propriétés de Lefschetz dans la cohomologie de certaines variétés arithmétiques : le cas des surfaces modulaires de Hilbert », in Séminaire de Théorie Spectrale et Géométrie. Vol. 21. Année 2002–2003, Sémin. Théor. Spectr. Géom., vol. 21, Univ. Grenoble I, Saint, 2003, p. 75–101. Numdam | | MR 2052826

[6] —, « Produits dans la cohomologie des variétés de shimura : quelques calculs », C. R. Math. Acad. Sci. Paris 339 (2004), no. 11, p. 751–756. MR 2110376

[7] N. Bergeron & L. ClozelSpectre automorphe des variétés hyperboliques et applications topologiques, Astérisque, vol. 303, Société Mathématique de France, 2005. MR 2245761

[8] A. Borel & Harish-Chandra – « Arithmetic subgroups of algebraic groups », Ann. of Math. (2) 75 (1962), p. 485–535. MR 147566

[9] A. Borel & N. R. WallachContinuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Mathematics Studies, vol. 94, Princeton University Press, Princeton, N.J., 1980. Zbl 0443.22010 | MR 554917

[10] M. Burger, J.-S. Li & P. Sarnak« Ramanujan duals and automorphic spectrum », Bull. Amer. Math. Soc. (N.S.) 26 (1992), no. 2, p. 253–257. Zbl 0762.22009 | MR 1118700

[11] M. Burger & P. Sarnak« Ramanujan duals. II », Invent. Math. 106 (1991), no. 1, p. 1–11. Zbl 0774.11021 | | MR 1123369

[12] L. Clozel & T. N. Venkataramana« Restriction of the holomorphic cohomology of a Shimura variety to a smaller Shimura variety », Duke Math. J. 95 (1998), no. 1, p. 51–106. Zbl 1037.11504 | MR 1646542

[13] L. Clozel« Démonstration de la conjecture τ », Invent. Math. 151 (2003), no. 2, p. 297–328. Zbl 1025.11012 | MR 1953260

[14] P. Deligne« Travaux de Shimura », in Séminaire Bourbaki, 23ème année (1970/71), Exp. No. 389, Springer, Berlin, 1971, p. 123–165. Lecture Notes in Math., Vol. 244. Numdam | | MR 498581

[15] H. Donnelly« On the spectrum of towers », Proc. Amer. Math. Soc. 87 (1983), no. 2, p. 322–329. Zbl 0512.58038 | MR 681842

[16] —, « Elliptic operators and covers of Riemannian manifolds », Math. Z. 223 (1996), no. 2, p. 303–308. Zbl 0871.58075 | | MR 1417433

[17] H. Donnelly & F. Xavier« On the differential form spectrum of negatively curved Riemannian manifolds », Amer. J. Math. 106 (1984), no. 1, p. 169–185. Zbl 0547.58034 | MR 729759

[18] M. Flensted-Jensen« Discrete series for semisimple symmetric spaces », Ann. of Math. (2) 111 (1980), no. 2, p. 253–311. Zbl 0462.22006 | MR 569073

[19] —, Analysis on non-Riemannian symmetric spaces, CBMS Regional Conference Series in Mathematics, vol. 61, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1986.

[20] W. FultonYoung tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997, With applications to representation theory and geometry. Zbl 0878.14034 | MR 1464693

[21] W. Fulton & J. HarrisRepresentation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991, A first course, Readings in Mathematics. MR 1153249

[22] I. M. GelʼFand, M. I. Graev & I. I. Pyatetskii-ShapiroRepresentation theory and automorphic functions, Generalized Functions, vol. 6, Academic Press Inc., Boston, MA, 1990, Translated from the Russian by K. A. Hirsch, Reprint of the 1969 edition. MR 1071179

[23] Harish-Chandra – « Representations of a semisimple Lie group on a Banach space. I », Trans. Amer. Math. Soc. 75 (1953), p. 185–243. MR 56610

[24] M. Harris & J.-S. Li« A Lefschetz property for subvarieties of Shimura varieties », J. Algebraic Geom. 7 (1998), no. 1, p. 77–122. Zbl 0954.14016 | MR 1620690

[25] S. HelgasonDifferential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, vol. 34, American Mathematical Society, Providence, RI, 2001, Corrected reprint of the 1978 original. Zbl 0122.39901 | MR 1834454

[26] R. Howe« θ-series and invariant theory », in Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, p. 275–285. Zbl 0423.22016 | MR 546602

[27] R. Howe« Reciprocity laws in the theory of dual pairs », in Representation theory of reductive groups (Park City, Utah, 1982), Progr. Math., vol. 40, Birkhäuser Boston, Boston, MA, 1983, p. 159–175. MR 733812

[28] —, « Transcending classical invariant theory », J. Amer. Math. Soc. 2 (1989), no. 3, p. 535–552. Zbl 0716.22006 | MR 985172

[29] A. W. KnappRepresentation theory of semisimple groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 2001, An overview based on examples, Reprint of the 1986 original. Zbl 0604.22001 | MR 1880691

[30] S. Kobayashi & K. NomizuFoundations of differential geometry. Vol. II, Wiley Classics Library, John Wiley & Sons Inc., New York, 1996, Reprint of the 1969 original, A Wiley-Interscience Publication. Zbl 0175.48504 | MR 1393941

[31] T. Kobayashi« Discrete decomposability of the restriction of A 𝔮 (λ) with respect to reductive subgroups and its applications », Invent. Math. 117 (1994), no. 2, p. 181–205. Zbl 0826.22015 | | MR 1273263

[32] —, « Discrete decomposability of the restriction of A 𝔮 (λ) with respect to reductive subgroups. III. Restriction of Harish-Chandra modules and associated varieties », Invent. Math. 131 (1998), no. 2, p. 229–256. Zbl 0907.22016 | MR 1608642

[33] T. Kobayashi & T. Oda« A vanishing theorem for modular symbols on locally symmetric spaces », Comment. Math. Helv. 73 (1998), no. 1, p. 45–70. Zbl 0933.11027 | MR 1610583

[34] S. S. Kudla« Seesaw dual reductive pairs », in Automorphic forms of several variables (Katata, 1983), Progr. Math., vol. 46, Birkhäuser Boston, Boston, MA, 1984, p. 244–268. Zbl 0549.10017 | MR 763017

[35] S. Kumaresan« On the canonical k-types in the irreducible unitary g-modules with nonzero relative cohomology », Invent. Math. 59 (1980), no. 1, p. 1–11. Zbl 0442.22010 | | MR 575078

[36] J.-S. Li« Theta lifting for unitary representations with nonzero cohomology », Duke Math. J. 61 (1990), no. 3, p. 913–937. Zbl 0723.22011 | MR 1084465

[37] —, « Nonvanishing theorems for the cohomology of certain arithmetic quotients », J. Reine Angew. Math. 428 (1992), p. 177–217. Zbl 0749.11032 | | MR 1166512

[38] J.-S. Li & J. J. Millson« On the first Betti number of a hyperbolic manifold with an arithmetic fundamental group », Duke Math. J. 71 (1993), no. 2, p. 365–401. Zbl 0798.11019 | MR 1233441

[39] D. E. Littlewood« Invariant theory, tensors and group characters », Philos. Trans. Roy. Soc. London. Ser. A. 239 (1944), p. 305–365. Zbl 0060.04402 | MR 10594

[40] G. A. Margulis & G. A. Soĭfer« Maximal subgroups of infinite index in finitely generated linear groups », J. Algebra 69 (1981), no. 1, p. 1–23. MR 613853

[41] Y. Matsushima« A formula for the Betti numbers of compact locally symmetric Riemannian manifolds », J. Differential Geometry 1 (1967), p. 99–109. Zbl 0164.22101 | MR 222908

[42] R. Mazzeo & R. S. Phillips« Hodge theory on hyperbolic manifolds », Duke Math. J. 60 (1990), no. 2, p. 509–559. Zbl 0712.58006 | MR 1047764

[43] J. J. Millson & M. S. Raghunathan« Geometric construction of cohomology for arithmetic groups. I », in Geometry and analysis, Indian Acad. Sci., Bangalore, 1980, p. 103–123. Zbl 0524.22012 | MR 592256

[44] T. Ōshima & T. Matsuki« A description of discrete series for semisimple symmetric spaces », in Group representations and systems of differential equations (Tokyo, 1982), Adv. Stud. Pure Math., vol. 4, North-Holland, Amsterdam, 1984, p. 331–390.

[45] R. Parthasarathy« Criteria for the unitarizability of some highest weight modules », Proc. Indian Acad. Sci. Sect. A Math. Sci. 89 (1980), no. 1, p. 1–24. Zbl 0434.22011 | MR 573381

[46] M. S. Raghunathan & T. N. Venkataramana« The first Betti number of arithmetic groups and the congruence subgroup problem », in Linear algebraic groups and their representations (Los Angeles, CA, 1992), Contemp. Math., vol. 153, Amer. Math. Soc., Providence, RI, 1993, p. 95–107. Zbl 0801.22006

[47] J. Rohlfs« Projective limits of locally symmetric spaces and cohomology », J. Reine Angew. Math. 479 (1996), p. 149–182. Zbl 0876.22021 | | MR 1414393

[48] T. SakaiRiemannian geometry, Translations of Mathematical Monographs, vol. 149, American Mathematical Society, Providence, RI, 1996, Translated from the 1992 Japanese original by the author. MR 1390760

[49] H. Schlichtkrull« The Langlands parameters of Flensted-Jensen’s discrete series for semisimple symmetric spaces », J. Funct. Anal. 50 (1983), no. 2, p. 133–150. Zbl 0507.22013 | MR 693225

[50] B. Speh & T. Venkataramana« Construction of some generalised modular symbols », arXiv :math.GR/0409376 v1 21 sept 2004. Zbl 1177.11041 | MR 2200998

[51] M. E. TaylorPartial differential equations. III, Applied Mathematical Sciences, vol. 117, Springer-Verlag, New York, 1997, Nonlinear equations, Corrected reprint of the 1996 original. MR 1477408

[52] Y. L. Tong & S. P. Wang« Harmonic forms dual to geodesic cycles in quotients of SU (p,1) », Math. Ann. 258 (1981/82), no. 3, p. 289–318. Zbl 0466.58004 |

[53] —, « Geometric realization of discrete series for semisimple symmetric spaces », Invent. Math. 96 (1989), no. 2, p. 425–458. Zbl 0685.22008 | | MR 989703

[54] T. N. Venkataramana« Cohomology of compact locally symmetric spaces », Compositio Math. 125 (2001), no. 2, p. 221–253. Zbl 0983.11027 | MR 1815394

[55] D. A. Vogan« Isolated unitary representations », to appear in the 2002 Park City summer school volume. MR 2331349

[56] D. A. Vogan, Jr.« The algebraic structure of the representation of semisimple Lie groups. I », Ann. of Math. (2) 109 (1979), no. 1, p. 1–60. Zbl 0424.22010 | MR 519352

[57] D. A. Vogan, Jr. & G. J. Zuckerman« Unitary representations with nonzero cohomology », Compositio Math. 53 (1984), no. 1, p. 51–90. Numdam | Zbl 0692.22008 | | MR 762307

[58] N. R. Wallach« Square integrable automorphic forms and cohomology of arithmetic quotients of SU(p,q) », Math. Ann. 266 (1984), no. 3, p. 261–278. Zbl 0533.10025 | | MR 730169

[59] S. P. Wang« Correspondence of modular forms to cycles associated to O(p,q) », J. Differential Geom. 22 (1985), no. 2, p. 151–213. Zbl 0594.10021 | MR 834276

[60] N. Yeganefar« Sur la L 2 -cohomologie des variétés à courbure négative », Duke Math. J. 122 (2004), no. 1, p. 145–180. MR 2046810

[61] S.-K. Yeung« Betti numbers on a tower of coverings », Duke Math. J. 73 (1994), no. 1, p. 201–226. Zbl 0818.22007 | MR 1257283

[62] S. Zucker« L 2 cohomology of warped products and arithmetic groups », Invent. Math. 70 (1982/83), no. 2, p. 169–218. Zbl 0508.20020 | | MR 684171