Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary  [ Étude quantitative de la métastabilité des processus réversibles au moyen du complexe de Witten : le cas à bord. ] (2006)


Helffer, Bernard; Nier, Francis
Mémoires de la Société Mathématique de France, Tome 105 (2006) vi-89 p doi : 10.24033/msmf.417
URL stable : http://www.numdam.org/item?id=MSMF_2006_2_105__1_0

Bibliographie

[1] J. Bismut« The Witten complex and the degenerate Morse inequalities », J. Differ. Geom. 23 (1986), p. 207–240. Zbl 0608.58038 | MR 852155

[2] C. Bolley & B. Helffer« Application of semi-classical analysis to the asymptotic study of the supercooling field of a superconducting material », Ann. Inst. H. Poincaré Phys. Théor. 58 (1991), no. 2, p. 189–233. Numdam | Zbl 0779.35104 | | MR 1217119

[3] A. Bovier, M. Eckhoff, V. Gayrard & M. Klein« Metastability in reversible diffusion processes I: Sharp asymptotics for capacities and exit times », JEMS 6 (2004), no. 4, p. 399–424. Zbl 1076.82045 | | MR 2094397

[4] A. Bovier, V. Gayrard & M. Klein« Metastability in reversible diffusion processes II: Precise asymptotics for small eigenvalues », JEMS 7 (2004), no. 1, p. 69–99. Zbl 1105.82025 | | MR 2120991

[5] D. Burghelea« Lectures on Witten-Helffer-Sjöstrand theory », Gen. Math. 5 (1997), p. 85–99. Zbl 0936.58008 | | MR 1723597

[6] K. Chang & J. Liu« A cohomology complex for manifolds with boundary », Topol. Methods in Nonlinear Anal. 5 (1995), no. 2, p. 325–340. Zbl 0848.58001 | MR 1374068

[7] H. Cycon, R. Froese, W. Kirsch & B. SimonSchrödinger Operators with Application to Quantum Mechanics and Global Geometry, Text and Monographs in Physics, Springer-Verlag, 1987. Zbl 0619.47005 | MR 883643

[8] M. DaugeElliptic boundary value problems on corner domains. Smoothness and asymptotic solutions, Lect. Notes in Math., vol. 1341, Springer Verlag, 1988. Zbl 0668.35001 | MR 961439

[9] M. Dimassi & J. SjöstrandSpectral asymptotics in the semiclassical limit, London Mathematical Society Lecture Note Series, vol. 268, Cambridge University Press, 1999. MR 1735654

[10] M. Freidlin & A. WentzellRandom perturbations of dynamical systems. 2nd edition, 2nd éd., Grundlehren der Mathematischen Wissenschaften, vol. 260, Springer Verlag, 1998. MR 1652127

[11] S. Gallot, D. Hullin & J. LafontaineRiemannian Geometry, 2nd éd., Universitext, Springer Verlag, 1993. Zbl 0636.53001 | MR 909697

[12] I. Gohberg & M. KrejnIntroduction à la théorie des opérateurs linéaires non auto-adjoints dans un espace hilbertien, Monographies Universitaires de Mathématiques, vol. 39, Dunod, 1971. MR 350445

[13] P. GrisvardElliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman, 1985. Zbl 0695.35060 | MR 775683

[14] P. Guérini« Prescription du spectre du Laplacien de Hodge-de Rham », Ann. ENS 37 (2004), no. 2, p. 270–303. Numdam | Zbl 1068.58016 | | MR 2061782

[15] B. Helffer« Etude du laplacien de Witten associé à une fonction de Morse dégénérée », Publications de l’université de Nantes, Séminaire EDP 1987-88.

[16] —, Semi-classical analysis for the Schrödinger operator and applications, Lect. Notes in Mathematics, vol. 1336, Springer Verlag, Berlin, 1988.

[17] —, Semi-classical analysis, Witten Laplacians and statistical mechanics, World Scientific, 2002.

[18] B. Helffer, M. Klein & F. Nier« Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach. », Matematica Contemporanea 26 (2004), p. 41–85. Zbl 1079.58025 | MR 2111815

[19] B. Helffer & J. Sjöstrand« Multiple wells in the semi-classical limit I », Comm. Partial Differential Equations. 9 (1984), no. 4, p. 337–408. Zbl 0546.35053 | MR 740094

[20] —, « Puits multiples en limite semi-classique II-interaction moléculaire-symétries-perturbations », Ann. Inst. H. Poincaré Phys. Théor. 42 (1985), no. 2, p. 127–212. Numdam | Zbl 0595.35031 | | MR 798695

[21] —, « Puits multiples en limite semi-classique IV-étude du complexe de Witten - », Comm. Partial Differential Equations 10 (1985), no. 3, p. 245–340. Zbl 0597.35024 | MR 780068

[22] —, « Puits multiples en limite semi-classique V - Etude des minipuits - », in Current topics in partial differential equations, 1986. Zbl 0628.35024

[23] R. Holley, R. Kusuoka & D. Stroock« Asymptotics of the spectral gap with applications to the theory of simulated annealing », J. Funct. Anal. 83 (1989), no. 2, p. 333–347. Zbl 0706.58075 | MR 995752

[24] J. Johnsen« On the spectral properties of Witten Laplacians, their range projections and Brascamp-Lieb’s inequality », Integral Equations and Operator Theory 36 (2000), no. 2, p. 288–324. Zbl 1023.58012 | MR 1753421

[25] V. KolokoltsovSemiclassical analysis for diffusions and stochastic processes, Lect. Notes in Mathematics, vol. 1724, Springer Verlag, 2000. Zbl 0951.60001 | MR 1755149

[26] V. Kolokoltsov & K. Makarov« Asymptotic spectral analysis of a small diffusion operator and the life times of the corresponding diffusion process », Russian J. Math. Phys. 4 (1996), no. 3, p. 341–360. Zbl 0912.58042 | MR 1443178

[27] V. Kondratiev« Boundary value problems for elliptic equations in domains with conical or angular points », Trudy Moskov. Mat. Obshch. 16 (1967), p. 209–292. MR 226187

[28] L. Miclo« Comportement de spectres d’opérateurs à basse température », Bull. Sci. Math. 119 (1995), p. 529–533. MR 1364276

[29] G. SchwarzHodge decomposition. A method for Solving Boundary Value Problems, Lect. Notes Series, vol. 1607, Springer Verlag, 1995. MR 1367287

[30] C. Simader« Essential self-adjointness of schrödinger operators bounded from below », Math. Z. 159 (1978), p. 47–50. Zbl 0409.35026 | | MR 470456

[31] B. SimonTrace ideals and their applications., Lecture Note Series, vol. 35, London Mathematical Society, Cambridge University Press. IX, 1979. Zbl 0423.47001 | MR 541149

[32] —, « Semi-classical analysis of low lying eigenvalues, I. Nondegenerate minima: Asymptotic expansions », Ann. Inst. H. Poincaré Phys. Théor. 38 (1983), p. 296–307.

[33] E. Witten« Supersymmetry and Morse inequalities », J. Differ. Geom. 17 (1982), p. 661–692. Zbl 0499.53056 | MR 683171

[34] W. ZhangLectures on Chern-Weil theory and Witten deformations, Nankai Tracts in Mathematics, vol. 4, World Scientific, 2002. MR 1864735