Weakly resonant tunneling interactions for adiabatic quasi-periodic Schrödinger operators  [ Effet tunnel faiblement résonant pour des opérateurs de Schrödinger quasi-périodiques adiabatiques ] (2006)


Fedotov, Alexander; Klopp, Frédéric
Mémoires de la Société Mathématique de France, Tome 104 (2006) vi-113 p doi : 10.24033/msmf.416
URL stable : http://www.numdam.org/item?id=MSMF_2006_2_104__1_0

Bibliographie

[1] J. Avron & B. Simon“Almost periodic Schrödinger operators II, the integrated density of states”, Duke Math. J. 50 (1983), p. 369–391. Zbl 0544.35030 | MR 700145

[2] J. Bellissard, R. Lima & D. Testard“Metal-insulator transition for the Almost Mathieu model”, Comm. Math. Phys. 88 (1983), p. 207–234. Zbl 0542.35059 | MR 696805

[3] V. Buslaev“Adiabatic perturbation of a periodic potential”, Teoret. Mat. Fiz. 58 (1984), p. 223–243, in Russian. Zbl 0534.34064 | MR 743409

[4] Buslaev, V.S.“Quasiclassical approximation for equations with periodic coefficients”, Uspekhi Mat. Nauk 42 (1987), p. 77–98, in Russian. MR 933996

[5] Buslaev, V.S. and Fedotov, A.A.“Bloch solutions for difference equations”, Algebra i Analiz 7 (1995), 4, p. 74–122. Zbl 0847.39002 | MR 1356532

[6] —, “On the difference equations with periodic coefficients”, Adv. Theor. Math. Phys. 5 (2001), 6, p. 1105–1168. Zbl 1012.39008 | MR 1926666

[7] Dinaburg, E.I. and Sinaĭ, J.G.“The one-dimensional Schrödinger equation with quasiperiodic potential”, Funktsional. Anal. i Prilozhen. 9 (1975), 4, p. 8–21. MR 470318

[8] M. EasthamThe spectral theory of periodic differential operators, Scottish Academic Press, 1973. MR 3075381

[9] A. Fedotov & F. Klopp“Strong resonant tunneling, level repulsion and spectral type for one-dimensional adiabatic quasi-periodic Schrödinger operator”, To appear in Ann. Sci. École Norm. Sup. Numdam | Zbl 1112.47038 | | MR 2216834

[10] —, “A complex WKB method for adiabatic problems”, Asymptot. Anal. 27 (2001), 3-4, p. 219–264. Zbl 1001.34082 | MR 1858917

[11] —, “Anderson transitions for a family of almost periodic Schrödinger equations in the adiabatic case”, Comm. Math. Phys. 227 (2002), 1, p. 1–92. Zbl 1004.81008 | MR 1903839

[12] —, “Geometric tools of the adiabatic complex WKB method”, Asymptot. Anal. 39 (2004), p. 309–357. Zbl 1070.34124 | MR 2097997

[13] —, “On the singular spectrum of one dimensional quasi-periodic Schrödinger operators in the adiabatic limit”, Ann. Henri Poincaré 5 (2004), p. 929–978. Zbl 1059.81057 | MR 2091984

[14] —, “On the absolutely continuous spectrum of one dimensional quasi-periodic Schrödinger operators in the adiabatic limit”, Trans. Amer. Math. Soc. 357 (2005), p. 4481–4516. Zbl 1101.34069 | MR 2156718

[15] Firsova, N.E.“On the global quasimomentum in solid state physics”, in Mathematical methods in physics, Londrina/World Sci. Publishing, 1999/2000, p. 98–141. Zbl 0996.81124 | MR 1775625

[16] Harrell, E.M.“Double wells”, Comm. Math. Phys. 75 (1980), 3, p. 239–261. Zbl 0445.35036 | MR 581948

[17] B. Helffer & J. Sjöstrand“Multiple wells in the semi-classical limit I”, Communications in Partial Differential Equations 9 (1984), p. 337–408. Zbl 0546.35053 | MR 740094

[18] M.-R. Herman“Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnol’d et de Moser sur le tore de dimension 2, Comment. Math. Helv. 58 (1983), 3, p. 453–502. Zbl 0554.58034 |

[19] Its, A.R. and Matveev, V.B.“Hill operators with a finite number of lacunae”, Funkcional. Anal. i Priložen. 9 (1975), 1, p. 69–70. MR 390355

[20] Y. Last & B. Simon“Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators”, Invent. Math. 135 (1999), 2, p. 329–367. Zbl 0931.34066 | MR 1666767

[21] V. Marchenko & I. Ostrovskii“A characterization of the spectrum of Hill’s equation”, Math. USSR Sbornik 26 (1975), p. 493–554. Zbl 0343.34016

[22] Mckean, H.P. and Trubowitz, E.“Hill’s surfaces and their theta functions”, Bull. Amer. Math. Soc. 84 (1978), 6, p. 1042–1085. Zbl 0428.34026 | MR 508448

[23] Mckean, H.P. and Van Moerbeke, P.“The spectrum of Hill’s equation”, Inventiones Mathematicae 30 (1975), p. 217–274. Zbl 0319.34024 | | MR 397076

[24] L. Pastur & A. FigotinSpectra of random and almost-periodic operators, Springer Verlag, 1992. Zbl 0752.47002 | MR 1223779

[25] —, “Spectra of random and almost-periodic operators”, in Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 297, Springer-Verlag, 1992. Zbl 0752.47002

[26] B. Simon“Instantons, double wells and large deviations”, Bull. Amer. Math. Soc. 8 (1983), 2, p. 323–326. Zbl 0529.35059 | MR 684899

[27] E. Sorets & T. Spencer“Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials”, Comm. Math. Phys. 142 (1991), 3, p. 543–566. Zbl 0745.34046 | MR 1138050

[28] E. TitschmarchEigenfunction expansions associated with second-order differential equations. part ii, Clarendon Press, 1958.