Ergodicité et équidistribution en courbure négative (2003)


Roblin, Thomas
Mémoires de la Société Mathématique de France, Tome 95 (2003) vi-96 p doi : 10.24033/msmf.408
URL stable : http://www.numdam.org/item?id=MSMF_2003_2_95__1_0

Bibliographie

[1] J. Aaronson et D. Sullivan« Rational ergodicity of geodesic flows », Ergod. Th. Dynam. Sys. 4 (1984), p. 165–178. Zbl 0599.58029 | MR 766098

[2] A. Ancona« Exemples de surfaces hyperboliques de type divergent, de mesures de Sullivan associées finies mais non géométriquement finies », non publié.

[3] M. Babillot« On the mixing property for hyperbolic systems », Israel J. Math. 129 (2002), p. 61–76. Zbl 1053.37001 | MR 1910932

[4] —, « Points entiers et groupes discrets : de l’analyse aux systèmes dynamiques », in Rigidité, groupe fondamental et dynamique (P. Foulon, éd.), Panoramas et Synthèses, vol. 13, Société Mathématique de France, 2002, p. 1–119. MR 1993148

[5] M. Babillot et F. Ledrappier« Geodesic paths and horocycle flow on abelian cover », in Lie groups and ergodic theory. Proceedings of the international colloquium, Mumbai, India, January 4-12, 1996 (S.G. Dani, éd.), Stud. Math., Tata Inst. Fundam. Res., vol. 14, Narosa Publishing House, New Delhi, 1998, p. 1–32. Zbl 0967.37020

[6] K. Belabas, S. Hersonsky et F. Paulin« Counting horoballs and rational geodesics », Bull. London Math. Soc. 33 (2001), no. 5, p. 606–612. Zbl 1090.37019 | MR 1844559

[7] M. Bourdon« Structure conforme au bord et flot géodésique d’un CAT (-1)-espace », Enseign. Math. 41 (1995), p. 63–102. MR 1341941

[8] B.H. Bowditch« Geometrical finiteness of hyperbolic groups », J. Funct. Anal. 113 (1993), no. 2, p. 245–317. Zbl 0789.57007 | MR 1218098

[9] —, « Geometrical finiteness with variable negative curvature », Duke Math. J. 77 (1995), no. 1, p. 229–274. Zbl 0877.57018 | MR 1317633

[10] R. Bowen et B. Marcus« Unique ergodicity for horocycle foliations », Israel J. Math. 26 (1977), p. 43–67. Zbl 0346.58009 | MR 451307

[11] M. Burger« Horocycle flow on geometrically finite surfaces », Duke Math. J. 61 (1990), no. 3, p. 779–803. Zbl 0723.58041 | MR 1084459

[12] S. Cosentino« Equidistribution of parabolic fixed points in the limit set of Kleinian groups », Ergod. Th. Dynam. Sys. 19 (1999), no. 6, p. 1437–1484. Zbl 0947.30033 | MR 1738946

[13] F. Dal’Bo« Topologie du feuilletage fortement stable », Ann. Inst. Fourier (Grenoble) 50 (2000), no. 3, p. 981–993. Numdam | Zbl 0965.53054 | | MR 1779902

[14] F. Dal’Bo, J.-P. Otal et M. Peigné« Séries de Poincaré des groupes géométriquement finis », Israel J. Math. 118 (2000), p. 109–124. MR 1776078

[15] F. Dal’Bo et M. Peigné« Some negatively curved manifolds with cusps, mixing and counting », J. reine angew. Math. 497 (1998), p. 141–169. Zbl 0890.53043 | MR 1617430

[16] S.G. Dani« Invariant measures and minimal sets of horospherical flows », Invent. Math. 64 (1981), p. 357–385. Zbl 0498.58013 | | MR 629475

[17] H. Furstenberg« The unique ergodicity of the horocycle flow », in Recent Advances topol. Dynamics, Proc. Conf. topol. Dynamics Yale Univ. 1972, Lect. Notes in Math., vol. 318, Springer-Verlag, 1973, p. 95–115. Zbl 0256.58009 | MR 393339

[18] E. Ghys et P. De La HarpeSur les groupes hyperboliques d’après Mikhael Gromov, Progress in Math., vol. 83, Birkhäuser, 1990. Zbl 0731.20025 | MR 1086650

[19] A.B. Hajian et S. Kakutani« Weakly wandering sets and invariant measures », Trans. Amer. Math. Soc. 110 (1964), p. 136–151. Zbl 0122.29804 | MR 154961

[20] G.A. Hedlund« Fuchsian groups and mixtures », Ann. of Math. (2) 40 (1939), p. 370–383. Zbl 65.0793.01 | MR 1503464

[21] S. Hersonsky et F. Paulin« Counting orbit points in coverings of negatively curved manifolds and Hausdorff dimension of cusp excursions », Ergod. Th. Dynam. Sys., à paraître. Zbl 1059.37022 | MR 2060999

[22] —, « On the rigidity of discrete isometry groups of negatively curved spaces », Comment. Math. Helv. 72 (1997), p. 349–388. Zbl 0908.57009 | MR 1476054

[23] E. HopfErgodentheorie, Springer, Berlin, 1937. Zbl 63.0786.07

[24] H. Huber« Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen », Math. Ann. 138 (1959), p. 1–26. Zbl 0089.06101 | | MR 109212

[25] V. Kaimanovich« Ergodicity of harmonic invariant measures for the geodesic flow on hyperbolic spaces », J. reine angew. Math. 455 (1994), p. 57–103. Zbl 0803.58032 | | MR 1293874

[26] —, « Ergodic properties of the horocycle flow and classification of Fuchsian groups », J. Dyn. Control Syst. 6 (2000), no. 1, p. 21–56. Zbl 0988.37038 | MR 1738739

[27] —, « SAT actions and ergodic properties of the horosphere foliation », in Rigidity in dynamics and geometry. Contributions from the programme Ergodic theory, geometric rigidity and number theory, Isaac Newton Institute for the Mathematical Sciences, Cambridge, UK, January 5-July 7, 2000 (M. Burger et al., éds.), Springer, Berlin, 2002, p. 261–282. Zbl 1054.37002

[28] U. KrengelErgodic theorems, De Gruyter Studies in Mathematics, vol. 6, Walter de Gruyter, Berlin, New York, 1985. Zbl 0471.28011 | MR 797411

[29] U. Krengel et L. Sucheston« On mixing in infinite measure spaces », Z. Wahrsch. Verw. Gebiete 13 (1969), p. 150–164. Zbl 0176.33804 | MR 254215

[30] K. Krickeberg« Strong mixing properties of Markov chains with infinite invariant measure », in Proc. Fifth Berkeley Symposium, Math. Stat. Probab. Vol 2, Part II, 1965, p. 431–445. MR 219140

[31] S.P. Lalley« Renewal theorems in symbolic dynamics, with applications to geodesic flows, non euclidean tesselations and their fractal limits », Acta Math. 163 (1989), no. 1-2, p. 1–55. Zbl 0701.58021 | MR 1007619

[32] P. Lax et R. Philips« The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces », J. Funct. Anal. 46 (1982), p. 280–350. Zbl 0497.30036 | MR 661875

[33] G.A. Margulis« Applications of ergodic theory to the investigation of manifolds of negative curvature », Functional Anal. Appl. 3 (1969), p. 335–336. Zbl 0207.20305 | MR 257933

[34] S.J. Patterson« The limit set of a fuchsian group », Acta Math. 136 (1976), p. 241–273. Zbl 0336.30005 | MR 450547

[35] —, « Spectral theory and Fuchsian groups », Math. Proc. Cambridge Philos. Soc. 81 (1977), no. 1, p. 59–75. Zbl 0372.30015 | MR 447120

[36] —, « Lectures on measures on limit sets of Kleinian groups », in Analytical and geometrical aspects of hyperbolic space, Symp. Warwick and Durham/Engl. 1984, Lond. Math. Soc. Lect. Note Ser., vol. 111, Cambridge University Press, 1987, p. 281–323.

[37] —, « On a lattice-point problem in hyperbolic space and related questions in spectral theory », Ark. Mat. 26 (1988), no. 1, p. 167–172. Zbl 0645.10040 | MR 948288

[38] M. Peigné« On the Bowen-Margulis measure of some discrete groups of isometries », Israel J. Math. 133 (2003), p. 77–88. Zbl 1017.37022 | MR 1968423

[39] M. Pollicott et R. Sharp« Orbit counting for some discrete groups acting on simply connected manifolds with negative curvature », Invent. Math. 117 (1994), p. 275–302. Zbl 0804.58009 | | MR 1273266

[40] M. Ratner« Raghunathan’s conjectures for SL(2,) », Israel J. Math. 80 (1992), no. 1-2, p. 1–31. Zbl 0785.22013 | MR 1248925

[41] F. Riesz et B. NagyLecons d’analyse fonctionnelle, Gauthier-Villars, Paris, 1965. Zbl 0122.11205 | MR 179567

[42] T. Roblin« Sur la théorie ergodique des groupes discrets en géométrie hyperbolique », Thèse, Université d’Orsay.

[43] —, « Sur l’ergodicité rationnelle et les propriétés ergodiques du flot géodésique dans les variétés hyperboliques », Ergod. Th. Dynam. Sys. 20 (2000), no. 6, p. 1785–1819. MR 1804958

[44] D.J. Rudolph« Ergodic behaviour of Sullivan’s geometric measure on a geometrically finite hyperbolic manifold », Ergod. Th. Dynam. Sys. 2 (1982), p. 491–512. Zbl 0525.58025 | MR 721736

[45] K. SchmidtCocycles on ergodic transformation groups, Macmillan Lectures in Mathematics, vol. 1, The Macmillan Company of India Ltd., Delhi, Bombay, Calcutta, Madras, 1977. Zbl 0421.28017 | MR 578731

[46] D. Sullivan« The density at infinity of a discrete group of hyperbolic motions », Publ. Math. Inst. Hautes Études Sci. 50 (1979), p. 171–202. Numdam | Zbl 0439.30034 | | MR 556586

[47] —, « Dicrete conformal groups and measurable dynamics », Bull. Amer. Math. Soc. (N.S.) 6 (1982), p. 57–73. Zbl 0489.58027 | MR 634434

[48] —, « Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups », Acta Math. 153 (1984), p. 259–277. Zbl 0566.58022 | MR 766265

[49] P. Tukia« The Poincaré series and the conformal measure of conical and Myrberg limit points », J. Analyse Math. 62 (1994), p. 241–259. Zbl 0799.30035 | MR 1269207

[50] Y. Colin De Verdière« Théorie spectrale des surfaces de Riemann d’aire infinie », in Colloq. Honneur L. Schwartz, Ec. Polytech. 1983, Vol.2, Astérisque, vol. 132, Société Mathématique de France, 1985, p. 259–275. Zbl 0582.58030 | MR 816771

[51] P. WaltersAn introduction to ergodic theory, Graduate Texts in Math., vol. 79, Springer-Verlag, New York, Heidelberg, Berlin, 1982. Zbl 0475.28009 | MR 648108

[52] C.B. Yue« The ergodic theory of discrete isometry groups of manifolds of variable negative curvature », Trans. Amer. Math. Soc. 348 (1996), no. 12, p. 4965–5005. Zbl 0864.58047 | MR 1348871