Symmetry types of hyperelliptic Riemann surfaces  [ Types de symétrie des surfaces de Riemann hyperelliptiques ] (2001)


Bujalance, Emilio; Cirre, Francisco-Javier; Gamboa, J.-M.; Gromadzki, Grzegorz
Mémoires de la Société Mathématique de France, Tome 86 (2001) vi-122 p doi : 10.24033/msmf.399
URL stable : http://www.numdam.org/item?id=MSMF_2001_2_86__1_0

Bibliographie

[1] N. L. Alling, Real Elliptic Curves, Mathematics Studies, 54, North-Holland, 1981. Zbl 0478.14022 | MR 640091

[2] N. L. Alling and N. Greenleaf, Foundations of the Theory of Klein Surfaces, Lecture Notes in Math., 219, Springer, 1971. Zbl 0225.30001 | MR 333163

[3] J. Bochnak, M. Coste and M. F. Roy, Géométrie Algébrique Réelle. Ergeb. der Math., 12, Springer-Verlag, Berlin, etc. 1987. Zbl 0633.14016 | MR 949442

[4] R. Brandt and H. Stichtenoth, Die automorphismengruppen hyperelliptischer Kurven, Manuscripta Math, 55, 1986, pp. 83–92. Zbl 0588.14022 | | MR 828412

[5] S. A. Broughton, E. Bujalance, A. F. Costa, J. M. Gamboa and G. Gromadzki, Symmetries of Riemann surfaces in which PSL(2,q) acts as a Hurwitz automorphism group. J. Pure App. Alg. 106, 2, 1996, pp. 113–126. Zbl 0847.30026

[6] S. A. Broughton, E. Bujalance, A. F. Costa, J. M. Gamboa and G. Gromadzki, Symmetries of Accola-Maclachlan and Kulkarni surfaces. Proc. Amer. Math. Soc., 127, 1999, pp. 637–646. Zbl 0921.14019 | MR 1468184

[7] E. Bujalance, Normal NEC signatures. Illinois J. Math., 26, 1982, pp. 519–530. Zbl 0483.20028 | MR 658461

[8] E. Bujalance, M. D. E. Conder, J. M. Gamboa, G. Gromadzki and M. Izquierdo, Double coverings of Klein surfaces by a given Riemann surface. To appear in J. Pure Appl. Alg. Zbl 0997.30032 | MR 1897339

[9] E. Bujalance and A. F. Costa, A combinatorial approach to symmetries of M and (M-1)-Riemann surfaces, Lect. Notes Series of London Math. Soc., 173, 1992, pp. 16–25. Zbl 0788.30036 | MR 1196912

[10] E. Bujalance and A. F. Costa, Estudio de las simetrías de la superficie de Macbeath. Libro homenaje al Prof. Etayo, Ed. Complutense, 1994, pp. 375–386.

[11] E. Bujalance and A. F. Costa, On symmetries of p-hyperelliptic Riemann surfaces. Math. Ann., 308, 1997, pp. 31–45. Zbl 0879.30024 | MR 1446197

[12] E. Bujalance, A. F. Costa and J. M. Gamboa, Real parts of complex algebraic curves. Lecture Notes in Math., 1420. Springer-Verlag, Berlin, 1990, pp. 81–110. Zbl 0736.30031 | MR 1051206

[13] E. Bujalance, A. F. Costa, S. M. Natanzon and D. Singerman, Involutions on compact Klein surfaces. Math. Z., 211, 1992, pp. 461–478. Zbl 0758.30036 | | MR 1190222

[14] E. Bujalance, J. J. Etayo, J. M. Gamboa and G. Gromadzki, Automorphism Groups of Compact Bordered Klein Surfaces. Lecture Notes in Math., 1439, Springer-Verlag, Berlin, 1990. Zbl 0709.14021 | MR 1075411

[15] E. Bujalance, J. M. Gamboa and G. Gromadzki, The full automorphism group of hyperelliptic Riemann surfaces. Manuscripta Math, 79, 1993, pp. 267–282. Zbl 0788.30031 | | MR 1223022

[16] E. Bujalance, G. Gromadzki and M. Izquierdo, On real forms of a complex algebraic curve. J. Austral. Math. Soc., 70, 2001, no 1, pp 134–142. Zbl 0992.14011 | MR 1808396

[17] E. Bujalance, G. Gromadzki and D. Singerman, On the number of real curves associated to a complex algebraic curve. Proc. Amer. Math. Soc., 120, 1994, pp. 507–513. Zbl 0820.30025 | MR 1165047

[18] E. Bujalance and D. Singerman, The symmetry type of a Riemann Surface. Proc. London Math. Soc., (3), 51, 1985, pp. 501–519. Zbl 0545.30032 | MR 805719

[19] J. A. Bujalance, Hyperelliptic compact non-orientable Klein surfaces without boundary. Kodai Math. J., 12, 1989, pp. 1–8. Zbl 0688.14024 | MR 987136

[20] P. Buser and R. Silhol, Geodesics, periods and equations of real hyperelliptic curves. Duke Math. J., 108, 2001, no 2, pp. 211–250. Zbl 1019.30042 | MR 1833391

[21] F. J. Cirre, Complex automorphism groups of real algebraic curves of genus 2. J. Pure Appl. Alg., 157, 2001, no 2–3, pp. 157–181. Zbl 0985.14013 | MR 1812050

[22] F. J. Cirre, On the birational classification of hyperelliptic real algebraic curves in terms of their equations. Submitted. MR 2217994

[23] F. J. Cirre, On a family of hyperelliptic Riemann surfaces. Submitted.

[24] C. J. Earle, On the moduli of closed Riemann surfaces with symmetries. Advances in the theory of Riemann surfaces. L. V. Ahlfors et al. (eds), Ann. of Math. Studies, 66, pp. 119–130, Princeton University Press and University of Tokio Press, 1971.

[25] The GAP Group, GAP – Groups, Algorithms and Programming, Version 4b5, 1998. School of Mathematical and Computational Sciences, University of St Andrews, Scotland and Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany.

[26] P. Gianni, M. Seppälä, R. Silhol and B. Trager, Riemann surfaces, plane algebraic curves and their periods matrices. J. Symbolic Computation, 12, 1998, pp. 789–803. Zbl 0964.14047 | MR 1662036

[27] L. Greenberg, Maximal Fuchsian groups. Bull. Amer. Math. Soc., 69, (1963), pp. 569–573. Zbl 0115.06701 | MR 148620

[28] G. Gromadzki, On a Harnack-Natanzon theorem for the family of real forms of Riemann surfaces. J. Pure Appl. Alg., (3) 121, 1997, pp. 253–269. Zbl 0885.14026 | MR 1477610

[29] G. Gromadzki, On ovals on Riemann surfaces. Rev. Mat. Ibero-Americana, 16, 2000, no 3, pp. 515–527. Zbl 1087.14507 | | MR 1813327

[30] G. Gromadzki and M. Izquierdo, Real forms of a Riemann surface of even genus. Proc. Amer. Math. Soc., 126, (6), 1998, pp. 3475–3479. Zbl 0913.20029 | MR 1485478

[31] B. H. Gross and J. Harris, Real algebraic curves. Ann. Sci. École Norm. Sup., 14, 1981, pp. 157–182. Numdam | Zbl 0533.14011 | | MR 631748

[32] A. Harnack, Über die Vieltheiligkeit der ebenen algebraischen Kurven. Math. Ann., 10, 1876, pp. 189–198. | MR 1509883

[33] A. H. M. Hoare, Subgroups of NEC groups and finite permutation groups. Quart. J. Math. Oxford, (2), 41, 1990, pp. 45–59. Zbl 0693.20044 | MR 1044754

[34] M. Izquierdo and D. Singerman, Pairs of symmetries of Riemann surfaces. Ann. Acad. Sci. Fenn. Math., (1), 23, 1998, pp. 3–24. Zbl 0914.30029 | | MR 1601910

[35] F. Klein, Über Realitätsverhältnisse bei der einem beliebigen Geschlechte zugehörigen Normalkurve der φ. Math. Ann., 42, 1893, pp. 1–29. | MR 1510765

[36] A. M. Macbeath, The classification of non-euclidean plane crystallographic groups. Canad. J. Math., 19, 1967, pp. 1192–1205. Zbl 0183.03402 | MR 220838

[37] C. Maclachlan, Smooth coverings of hyperellyptic surfaces, Quart. J. Math. Oxford, (2), 22, 1971, pp. 117–123. Zbl 0208.10101 | MR 283194

[38] C. L. May, Large automorphism groups of compact Klein surfaces with boundary I. Glasgow Math. J., 18, 1977, pp. 1–10. Zbl 0363.14008 | MR 425113

[39] A. Melekoğlu, Symmetries of Riemann Surfaces and Regular Maps. Doctoral thesis, Faculty of Mathematical Studies, University of Southampton, (1998). MR 2715341

[40] R. Miranda, Algebraic Curves and Riemann Surfaces, Graduate Studies in Math., Vol. 5, A. M. S., 1995. Zbl 0820.14022 | MR 1326604

[41] S. M. Natanzon, Lobachevskian geometry and automorphisms of complex M-curves. Geometric Methods in Problems of Analysis and Algebra, Yaroslav, Gos. Univ., Yaroslavl’ 1978, pp. 130–151; English transl. Selecta Math. Sovietica 1, 1981, pp. 81–99. Zbl 0462.14009 | MR 575877

[42] S. M. Natanzon, The number and topological types of real hyperelliptic curves isomorphic over . Constructive Algebraic Geometry (Z. A. Skopets, editor), Sb. Nauchn. Trudov Yaroslav. Gos. Ped. Inst. Vyp. 200, 1982, pp. 82–93, (Russian).

[43] S. M. Natanzon, Finite groups of homeomorphisms of a surface and real forms of complex algebraic curves. Trans. Moscow Math. Soc., 51, 1989, pp. 1–51. Zbl 0692.14020 | MR 983631

[44] S. M. Natanzon, On the order of a finite group of homeomorphisms of a surface into itself and the number of real forms of a complex algebraic curve. Dokl. Akad. Nauk SSSR, 242, 1978, pp. 765–768. English transl. in Soviet Math. Dokl. (5), 19, 1978, pp. 1195–1199. Zbl 0417.57003 | MR 509374

[45] S. M. Natanzon, On the total number of ovals of real forms of complex algebraic curves. Uspekhi Mat. Nauk, (1), 35, 1980, pp. 207–208. (Russian Math. Surveys (1), 35, 1980, pp. 223–224. Zbl 0467.14009 | MR 565578

[46] R. Preston, Projective structures and fundamental domains on compact Klein surfaces. Ph. D. Thesis, Univ. of Texas, 1975.

[47] D. Singerman, Finitely maximal Fuchsian groups. J. London Math. Soc., (2), 6, 1972, pp. 29-38. Zbl 0251.20052 | MR 322165

[48] D. Singerman, Symmetries of Riemann surfaces with large automorphism group. Math. Ann., 210, 1974, pp. 17–32. Zbl 0272.30022 | | MR 361059

[49] D. Singerman, Symmetries and pseudo-symmetries of hyperelliptic surfaces. Glasgow Math. J., 21, 1980, pp. 39–49. Zbl 0425.30039 | MR 558273

[50] D. Singerman, Mirrors on Riemann surfaces. Contemporary Mathematics, 184, 1995, pp. 411–417. Zbl 0851.30025 | MR 1332306

[51] P. Turbek, The full automorphism group of the Kulkarni surface. Rev. Mat. Univ. Compl. Madrid, (2), 10, 1997, pp. 265–276. Zbl 0892.30033 | | MR 1605650

[52] G. Weichold, Über symmetrische Riemannsche Flächen und die Periodizitätsmodulen der zugerhörigen Abelschen Normalintegrale erstes Gattung, Dissertation, Leipzig, 1883.

[53] H. C. Wilkie, On non-euclidean crystallographic groups. Math. Z., 91, 1966, pp. 87–102. Zbl 0166.02602 | | MR 185013