Ensembles de Julia de mesure positive et disques de Siegel des polynômes quadratiques  [ Positive measure Julia sets and Siegel disks of quadratic polynomials ]
Séminaire Bourbaki : volume 2005/2006, exposés 952-966, Astérisque no. 311  (2007), Talk no. 966, p. 385-401

Xavier Buff and Arnaud Chéritat have shown that the Julia sets of some quadratic polynomials have positive Lebesgue measure, answering a question open since Fatou and Julia. These polynomials have an indifferent fixed point with carefully selected rotation number. We will explain the main steps of their proof and present related results of the same authors on the geometry and the size of Siegel disks.

Xavier Buff et Arnaud Chéritat ont montré que l'ensemble de Julia de certains polynômes quadratiques est de mesure de Lebesgue positive, répondant ainsi à une question ouverte depuis Fatou et Julia. Les polynômes en question ont un point fixe indifférent irrationnel dont le nombre de rotation doit être soigneusement déterminé. On exposera les grandes lignes de la démonstration, ainsi que d'autres résultats connexes des mêmes auteurs sur la géométrie et la taille des disques de Siegel.

Classification:  37F50
Keywords: Julia sets, Siegel disks, holomorphic dynamics
@incollection{SB_2005-2006__48__385_0,
     author = {Yoccoz, Jean-Christophe},
     title = {Ensembles de Julia de mesure positive et disques de Siegel des polyn\^omes quadratiques},
     booktitle = {S\'eminaire Bourbaki : volume 2005/2006, expos\'es 952-966},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {311},
     year = {2007},
     note = {talk:966},
     pages = {385-401},
     zbl = {1194.37072},
     mrnumber = {2359051},
     language = {fr},
     url = {http://www.numdam.org/item/SB_2005-2006__48__385_0}
}
Yoccoz, Jean-Christophe. Ensembles de Julia de mesure positive et disques de Siegel des polynômes quadratiques, in Séminaire Bourbaki : volume 2005/2006, exposés 952-966, Astérisque, no. 311 (2007), Talk no. 966, pp. 385-401. http://www.numdam.org/item/SB_2005-2006__48__385_0/

[1] A. Avila, X. Buff & A. Chéritat - “Siegel disks with smooth boundaries”, Acta Math. 193 (2004), no. 1, p. 1-30. | MR 2155030 | Zbl 1076.37030

[2] A. D. Brjuno - “Analytic form of differential equations I, II”, Trudy Moskov. Mat. Obšč. 25, 26 (1971, 1972), p. 119-262, p. 199-239. | MR 377192 | Zbl 0263.34003

[3] X. Buff - “Disques de Siegel et ensembles de Julia d'aire strictement positive”, preprint, http://www.picard.ups-tlse.fr/~buff/HDR/HDR.pdf.

[4] X. Buff & A. Chéritat - “The Brjuno function continuously estimates the size of quadratic Siegel disks”, Ann. of Math. (2) 164 (2006), p. 265-312. | MR 2233849 | Zbl 1109.37040

[5] -, “Quadratic Julia sets with positive area”, preprint http://arxiv.org/abs/math/0605514. | Zbl 1228.37036

[6] -, “Upper bound for the size of quadratic Siegel disks”, Invent. Math. 156 (2004), no. 1, p. 1-24. | MR 2047656 | Zbl 1087.37041

[7] -, “Ensembles de Julia quadratiques de mesure de Lebesgue strictement positive”, C. R. Math. Acad. Sci. Paris 341 (2005), no. 11, p. 669-674. | MR 2183346 | Zbl 1082.37049

[8] -, “How regular can the boundary of a quadratic Siegel disk be ?”, Proc. Amer. Math. Soc. 135 (2007), p. 1073-1080. | Article | MR 2262908 | Zbl 1161.37036

[9] A. Chéritat - “Recherche d'ensembles de Julia de mesure de Lebesgue positive”, Thèse, Orsay, 2001.

[10] -, “Sur la vitesse d'explosion des points fixes paraboliques dans la famille quadratique”, C. R. Math. Acad. Sci. Paris 334 (2002), no. 12, p. 1107-1112. | MR 1911655 | Zbl 1115.37324

[11] A. Douady & J. Hubbard - “Étude dynamique des polynômes complexes I, II”, Publ. Math. Orsay (1984-85). | Zbl 0552.30018

[12] L. Geyer - “Smooth Siegel discs without number theory : A remark on a proof by Buff and Chéritat”, preprint http://arxiv.org/abs/math.DS/0510578 (2003). | MR 2405900 | Zbl 1159.37013

[13] H. Inou & M. Shishikura - “The renormalization for parabolic fixed points and their perturbation”, preprint, http://www.math.kyoto-u.ac.jp/~mitsu/pararenorm/ParabolicRenormalization.pdf.

[14] H. Jellouli - “Perturbation d'une fonction linéarisable”, in The Mandelbrot set, theme and variations, London Math. Soc. Lecture Note Ser., vol. 274, Cambridge Univ. Press, Cambridge, 2000, p. 227-252. | MR 1765091 | Zbl 1062.37045

[15] M. Lyubich - “On the Lebesgue measure of the Julia set of a quadratic polynomial”, Stonybrook IMS, preprint (1991/10).

[16] S. Marmi - “Critical functions for complex analytic maps”, J. Phys. A 23 (1990), no. 15, p. 3447-3474. | MR 1068237 | Zbl 0724.58037

[17] S. Marmi, P. Moussa & J.-C. Yoccoz - “The Brjuno functions and their regularity properties”, Comm. Math. Phys. 186 (1997), no. 2, p. 265-293. | MR 1462766 | Zbl 0947.30018

[18] C. T. Mcmullen - “Self-similarity of Siegel disks and Hausdorff dimension of Julia sets”, Acta Math. 180 (1998), no. 2, p. 247-292. | MR 1638776 | Zbl 0930.37022

[19] R. Pérez-Marco - “Siegel disks with smooth boundary”, preprint (1997).

[20] C. L. Petersen & S. Zakeri - “On the Julia set of a typical quadratic polynomial with a Siegel disk”, Ann. of Math. (2) 159 (2004), no. 1, p. 1-52. | MR 2051390 | Zbl 1069.37038

[21] M. Shishikura - Unpublished.

[22] C. L. Siegel - “Iteration of analytic functions”, Ann. of Math. (2) 43 (1942), p. 607-612. | MR 7044 | Zbl 0061.14904

[23] J.-C. Yoccoz - Petits diviseurs en dimension 1, Astérisque, vol. 231, Soc. Math. France, Paris, 1995. | Numdam | Zbl 0836.30001

[24] -, “Analytic linearization of circle diffeomorphisms”, in Dynamical systems and small divisors (Cetraro, 1998), Lecture Notes in Math., vol. 1784, Springer, Berlin, 2002, p. 125-173. | MR 1924912 | Zbl 05810605