La conjecture des soufflets
[The bellows conjecture]
Séminaire Bourbaki : volume 2002/2003, exposés 909-923, Astérisque, no. 294 (2004), Talk no. 912, pp. 77-95.

Bricard and Connelly showed that there are (non-convex) polyhedra in euclidean space which are flexible: one can deform them continuously without changing the shape of their faces. The Bellows Conjecture states that the volume bounded by those polyhedra remains constant during the flex. It was proved recently by I. Sabitov, using algebraic tools which were unexpected in this context.

On sait depuis les travaux de Bricard et de Connelly qu'il existe dans l'espace euclidien des polyèdres (non convexes) qui sont flexibles : on peut les déformer continûment sans changer la forme de leurs faces. La conjecture des soufflets affirme que le volume interieur de ces polyèdres est constant au cours de la déformation. Elle a été démontrée récemment par I. Sabitov, qui a pour cela utilisé des outils algébriques inattendus dans ce contexte.

Classification: 52C25,  52B10,  52B45
Keywords: flexible polyhedra, volume, places
@incollection{SB_2002-2003__45__77_0,
     author = {Schlenker, Jean-Marc},
     title = {La conjecture des soufflets},
     booktitle = {S\'eminaire Bourbaki : volume 2002/2003, expos\'es 909-923},
     author = {Collectif},
     series = {Ast\'erisque},
     note = {talk:912},
     pages = {77--95},
     publisher = {Association des amis de Nicolas Bourbaki, Soci\'et\'e math\'ematique de France},
     address = {Paris},
     number = {294},
     year = {2004},
     zbl = {1078.52014},
     language = {fr},
     url = {http://www.numdam.org/item/SB_2002-2003__45__77_0/}
}
TY  - CHAP
AU  - Schlenker, Jean-Marc
TI  - La conjecture des soufflets
BT  - Séminaire Bourbaki : volume 2002/2003, exposés 909-923
AU  - Collectif
T3  - Astérisque
N1  - talk:912
PY  - 2004
DA  - 2004///
SP  - 77
EP  - 95
IS  - 294
PB  - Association des amis de Nicolas Bourbaki, Société mathématique de France
PP  - Paris
UR  - http://www.numdam.org/item/SB_2002-2003__45__77_0/
UR  - https://zbmath.org/?q=an%3A1078.52014
LA  - fr
ID  - SB_2002-2003__45__77_0
ER  - 
%0 Book Section
%A Schlenker, Jean-Marc
%T La conjecture des soufflets
%B Séminaire Bourbaki : volume 2002/2003, exposés 909-923
%A Collectif
%S Astérisque
%Z talk:912
%D 2004
%P 77-95
%N 294
%I Association des amis de Nicolas Bourbaki, Société mathématique de France
%C Paris
%G fr
%F SB_2002-2003__45__77_0
Schlenker, Jean-Marc. La conjecture des soufflets, in Séminaire Bourbaki : volume 2002/2003, exposés 909-923, Astérisque, no. 294 (2004), Talk no. 912, pp. 77-95. http://www.numdam.org/item/SB_2002-2003__45__77_0/

[Ale58] A. D. Alexandrow - Konvexe polyeder, Akademie-Verlag, Berlin, 1958. | MR

[Ale97] V. Alexandrov - “An example of a flexible polyhedron with nonconstant volume in the spherical space”, Beiträge Algebra Geom. 38 (1997), no. 1, p. 11-18. | MR | Zbl

[Ale01] -, “Flexible polyhedra in Minkowski 3-space”, Preprint Jussieu, math.MG/0111003, 2001.

[And70] E. M. Andreev - “Convex polyhedra in Lobacevskii space”, Mat. Sb.(N.S.) 81 (123) (1970), p. 445-478. | MR | Zbl

[And71] -, “On convex polyhedra of finite volume in Lobacevskii space”, Math. USSR Sbornik 12 (3) (1971), p. 225-259. | Zbl

[AS99] A. V. Astrelin & I. Kh. Sabitov - “A canonical polynomial for the volume of a polyhedron”, Uspekhi Mat. Nauk 54 (1999), no. 2(326), p. 165-166. | MR | Zbl

[Ber77] M. Berger - Géométrie. Vol. 3, CEDIC, Paris, 1977, Convexes et polytopes, polyèdres réguliers, aires et volumes. | Zbl

[BP01] M. Boileau & J. Porti - Geometrization of 3-orbifolds of cyclic type, Astérisque, vol. 272, Soc. Math. France, Paris, 2001, Appendix A by Michael Heusener and Joan Porti. | Numdam | MR | Zbl

[Bri96] R. Bricard - “Sur une question de géométrie relative aux polyèdres”, Nouv. Ann. Math. 15 (1896), p. 331-334. | JFM | Numdam

[Bri97] -, “Mémoire sur la théorie de l'octaèdre articulé”, J. Math. Pur. Appl., Liouville 3 (1897), p. 113-148. | JFM

[BZ95] Yu. D. Burago & V. A. Zalgaller - “Isometric piecewise-linear embeddings of two-dimensional manifolds with a polyhedral metric into 𝐑 3 , Algebra i Analiz 7 (1995), no. 3, p. 76-95. | MR | Zbl

[Car86] P. Cartier - “Décomposition des polyèdres : le point sur le troisième problème de Hilbert”, Séminaire Bourbaki (1984/85), Astérisque, vol. 133-134, Soc. Math. France, Paris, 1986, p. 261-288. | Numdam | MR | Zbl

[Cau13] A. L. Cauchy - “Sur les polygones et polyèdres, second mémoire”, Journal de l'Ecole Polytechnique 19 (1813), p. 87-98.

[CHK00] D. Cooper, C. D. Hodgson & S. P. Kerckhoff - Three-dimensional orbifolds and cone-manifolds, MSJ Memoirs, vol. 5, Mathematical Society of Japan, Tokyo, 2000, With a postface by Sadayoshi Kojima. | MR | Zbl

[Con77] R. Connelly - “A counterexample to the rigidity conjecture for polyhedra”, Inst. Haut. Etud. Sci., Publ. Math. 47 (1977), p. 333-338. | Numdam | MR | Zbl

[Con80] -, “Conjectures and open questions in rigidity”, Proceedings of the International Congress of Mathematicians (Helsinki, 1978) (Helsinki), Acad. Sci. Fennica, 1980, p. 407-414. | MR | Zbl

[Con93] -, “Rigidity”, Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993, p. 223-271. | MR | Zbl

[Con79] -, “A flexible sphere”, Math. Intelligencer 1 (1978/79), no. 3, p. 130-131. | MR | Zbl

[CS94] R. Connelly & H. Servatius - “Higher-order rigidity-what is the proper definition ?”, Discrete Comput. Geom. 11 (1994), no. 2, p. 193-200. | MR | Zbl

[CSW97] R. Connelly, I. Kh. Sabitov & A. Walz - “The Bellows conjecture”, Beitr. Algebra Geom. 38 (1997), p. 1-10, http://www.emis.de/journals/BAG/. | MR | Zbl

[CW94] H. Crapo & W. Whiteley - “Spaces of stresses, projections and parallel drawings for spherical polyhedra”, Beiträge Algebra Geom. 35 (1994), no. 2, p. 259-281. | MR | Zbl

[Dar93] G. Darboux - Leçons sur la théorie générale des surfaces. III, IV, Éditions Jacques Gabay, Sceaux, 1993, Réédition de l'original de 1894 (III) et de l'original de 1896 (IV), Cours de Géométrie de la Faculté des Sciences.

[Deh01] M. Dehn - “Über den Rauminhalt”, Math. Ann. 105 (1901), p. 465-478. | JFM | MR

[Deh16] -, “Über den Starrheit konvexer Polyeder”, Math. Ann. 77 (1916), p. 466-473. | JFM | MR

[Glu75] H. Gluck - “Almost all simply connected closed surfaces are rigid”, Geometric topology (Proc. Conf., Park City, Utah, 1974), Lect. Notes in Math., vol. 438, Springer, Berlin, 1975, p. 225-239. | MR | Zbl

[Jen68] B. Jensen - “The algebra of polyhedra and the Dehn-Sydler theorem”, Math. Scand. 22 (1968), p. 241-256. | MR | Zbl

[Kui79] N. H. Kuiper - “Sphères polyédriques flexibles dans E 3 , d’après Robert Connelly”, Séminaire Bourbaki (1977/78), Lect. Notes in Math., vol. 710, Springer, Berlin, 1979, exposé 514, p. 147-168. | Numdam | MR | Zbl

[Lan72] S. Lang - Introduction to algebraic geometry, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1972, Third printing, with corrections. | MR | Zbl

[Leb09] H. Lebèsgue - “Démonstration complète du théorème de Cauchy sur l'égalité des polyèdres convexes”, Intermédiaire des Mathématiciens 16 (1909), p. 113-120.

[LegII] A.-M. Legendre - éléments de géométrie, Paris, 1793 (an II), Première édition, note XII, pp.321-334.

[Pog73] A. V. Pogorelov - Extrinsic geometry of convex surfaces, Translations of Mathematical Monographs, vol. 35, American Mathematical Society, 1973. | MR | Zbl

[RH93] I. Rivin & C. D. Hodgson - “A characterization of compact convex polyhedra in hyperbolic 3-space”, Invent. Math. 111 (1993), p. 77-111. | MR | Zbl

[RR00] L. Rodríguez & H. Rosenberg - “Rigidity of certain polyhedra in 𝐑 3 , Comment. Math. Helv. 75 (2000), no. 3, p. 478-503. | MR | Zbl

[Sab92] I. Kh. Sabitov - “Local theory of bendings of surfaces”, Geometry, III, Encyclopaedia Math. Sci., vol. 48, Springer, Berlin, 1992, p. 179-256. | MR | Zbl

[Sab96] -, “The volume of a polyhedron as a function of its metric”, Fundam. Prikl. Mat. 2 (1996), no. 4, p. 1235-1246. | MR | Zbl

[Sab98a] -, “The generalized Heron-Tartaglia formula and some of its consequences”, Mat. Sb. 189 (1998), no. 10, p. 105-134. | MR | Zbl

[Sab98b] -, “A proof of the “bellows” conjecture for polyhedra of low topological genus”, Dokl. Akad. Nauk 358 (1998), no. 6, p. 743-746. | MR | Zbl

[Sab98c] -, “The volume as a metric invariant of polyhedra”, Discrete Comput. Geom. 20 (1998), no. 4, p. 405-425. | MR | Zbl

[Sab01] -, “Calculation of polyhedra”, Dokl. Akad. Nauk 377 (2001), no. 2, p. 161-164. | MR | Zbl

[Sab02] -, “Algorithmic solution of the problem of the isometric realization of two-dimensional polyhedral metrics”, Izv. Ross. Akad. Nauk Ser. Mat. 66 (2002), no. 2, p. 159-172. | MR | Zbl

[Sau35] R. Sauer - “Infinitesimale Verbiegungen zueinander projektiver Fläschen”, Math. Ann 111 (1935), p. 71-82. | JFM | MR

[Ste16] E. Steinitz - “Polyeder und Raumeinteilungen”, Encycl. Math. Wiss. 3 (1916), p. 1-139.

[Sto68] J. J. Stoker - “Geometrical problems concerning polyhedra in the large”, Comm. Pure Appl. Math. 21 (1968), p. 119-168. | MR | Zbl

[Syd65] J.-P. Sydler - “Conditions nécessaires et suffisantes pour l'équivalence des polyèdres de l'espace euclidien à trois dimensions”, Comment. Math. Helv. 40 (1965), p. 43-80. | MR | Zbl

[Thu97] W. P. Thurston - “Three-dimensional geometry and topology.”, Recent version of the 1980 notes. http://www.msri.org/publications/books/gt3m/, 1997. | Zbl

[TW00] T.-S. Tay & W. Whiteley - “A homological interpretation of skeletal ridigity”, Adv. in Appl. Math. 25 (2000), no. 1, p. 102-151. | MR | Zbl