@incollection{AST_1999__258__109_0, author = {S\'ark\H{o}zy, Andr\'as}, title = {On finite addition theorems}, booktitle = {Structure theory of set addition}, editor = {Deshouilliers Jean-Marc and Landreau Bernard and Yudin Alexander A.}, series = {Ast\'erisque}, pages = {109--127}, publisher = {Soci\'et\'e math\'ematique de France}, number = {258}, year = {1999}, mrnumber = {1701190}, zbl = {0969.11003}, language = {en}, url = {http://www.numdam.org/item/AST_1999__258__109_0/} }
TY - CHAP AU - Sárkőzy, András TI - On finite addition theorems BT - Structure theory of set addition AU - Collectif ED - Deshouilliers Jean-Marc ED - Landreau Bernard ED - Yudin Alexander A. T3 - Astérisque PY - 1999 SP - 109 EP - 127 IS - 258 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_1999__258__109_0/ LA - en ID - AST_1999__258__109_0 ER -
%0 Book Section %A Sárkőzy, András %T On finite addition theorems %B Structure theory of set addition %A Collectif %E Deshouilliers Jean-Marc %E Landreau Bernard %E Yudin Alexander A. %S Astérisque %D 1999 %P 109-127 %N 258 %I Société mathématique de France %U http://www.numdam.org/item/AST_1999__258__109_0/ %G en %F AST_1999__258__109_0
Sárkőzy, András. On finite addition theorems, in Structure theory of set addition, Astérisque, no. 258 (1999), pp. 109-127. http://www.numdam.org/item/AST_1999__258__109_0/
[1] Subset sums, J. Number Theory, 27, 1987, 196-205. | DOI | MR | Zbl
,[2] On sums of subsets of a set of integers, Combinatorica, 8, 1988, 297-306. | DOI | MR | Zbl
and ,[3] A theorem on the densities of sets of integers, J. London Math. Soc., 20, 1945, 8-14. | DOI | MR | Zbl
,[4] On the representation of large integers as sums of distinct summands taken from a fixed set, Acta. Arith., 7, 1961/62, 345-354. | DOI | EuDML | MR | Zbl
,[5] On two additive problems, J. Number Theory, 34, 1990, 1-12. | DOI | MR | Zbl
and ,[6] On the number of partitions of without a given subsum, II, Analytic Number Theory, Proceedings of a Conference in Honor of P. T. Bateman, B. C. Berndt et al. eds., Birkhäuser, Boston-Basel-Berlin, 1990, 205-234. | MR | Zbl
, and ,[7] On the number of pairs of partitions of without common subsums, Colloquium Math., 63, 1992, 61-83. | EuDML | MR | Zbl
, and ,[8] On a problem of Straus, Disorder in Physical Systems (a volume in Honour of John M. Hammersley), G. R. Grimmett and D. J. Welsh eds., Clarendon Press, Oxford, 1990, 55-66. | Zbl
and ,[9] Arithmetic progression in subset sums, Discrete Mathematics, 102, 1992, 249-264. | DOI | MR | Zbl
and ,[10] On prime factors of subset sums, J. London Math. Soc., 49, 1994, 209-218. | DOI | MR | Zbl
, and ,[11] On the representation of integers as sums of distinct terms from a fixed sequence, Canadian J. Math, 18, 1966, 643-655. | DOI | MR | Zbl
,[12] Foundations of a Structural Theory of Set Additions, Translations of Mathematical Monographs, 37, Amer. Math. Soc., Providence, RI. | MR | Zbl
,[13] New analytical results in subset-sum problem, Discrete Mathematics, 114, 1993, 205-218. | DOI | MR | Zbl
,[14] Sumsets and powers of , Coll. Math. Soc. J. Bolyai, 60, 1992, 279-286. | MR | Zbl
,[15] Sieve Methods, Academic Press, 1974. | MR | Zbl
and ,[16] Sequences, Springer Verlag, Berlin, 1983. | DOI | MR | Zbl
and ,[17] Zur additiven Zahlentheorie, Math. Sb. N.S., 39, 1932, 27-34. | JFM | Zbl
,[18] Abschätzungen der asymptotischen Dichte von Summenmengen, Math. Z, 58, 1953, 459-484. | DOI | EuDML | MR | Zbl
,[19] A proof of the fundamental theorem on the density of sums of sets of positive integers, Ann. Math., 43, 1942, 523-527. | DOI | MR | Zbl
,[20] Sumsets containing long arithmetic progressions and powers of , Acta Arith., 54, 1989, 147-154. | DOI | EuDML | MR | Zbl
and ,[21] Finite addition theorems, I, J. Number Theory, 32, 1989, 114-130. | DOI | MR | Zbl
,[22] Finite addition theorems, II, J. Number Theory, 48, 1994, 197-218. | DOI | MR | Zbl
,[23] Finite addition theorems, III, Publ. Math. d'Orsay, 92-01, 105-122 | MR | Zbl
,[24] Über additive Eigenschaften von Zahlen, Annals Inst. Polyt. Novocherkassk, 14, (1930), 3-28 | JFM
Über additive Eigenschaften von Zahlen, Math. Annalen, 107, 1933, 649-90. | DOI | EuDML | JFM | MR | Zbl