Generic blocks of finite reductive groups to Charlie Curtis
Représentations unipotentes génériques et blocs des groupes réductifs finis - Avec un appendice de George Lusztig, Astérisque no. 212  (1993), p. 7-92
@incollection{AST_1993__212__7_0,
     author = {Brou\'e, Michel and Malle, Gunter and Michel, Jean},
     title = {Generic blocks of finite reductive groups to Charlie Curtis},
     booktitle = {Repr\'esentations unipotentes g\'en\'eriques et blocs des groupes r\'eductifs finis - Avec un appendice de George Lusztig},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {212},
     year = {1993},
     pages = {7-92},
     language = {en},
     url = {http://www.numdam.org/item/AST_1993__212__7_0}
}
Broué, Michel; Malle, Gunter; Michel, Jean. Generic blocks of finite reductive groups to Charlie Curtis, in Représentations unipotentes génériques et blocs des groupes réductifs finis - Avec un appendice de George Lusztig, Astérisque, no. 212 (1993), pp. 7-92. http://www.numdam.org/item/AST_1993__212__7_0/

[Be] M. Benard, Schur indices and splitting fields of the unitary reflection groups, J. Algebra 38 (1976), 318-342.

[BoTi] A. Borel and J. Tits, Groupes réductifs, Publ. Math. I. H. E. S. 27 (1965), 55-151.

[Bou] N. Bourbaki, Groupes et algèbres de Lie, chap. 4, 5 et 6, Hermann, Paris, 1968.

[Boy] R. Boyce, Cyclotomic polynomials and irreducible representations of finite groups of Lie type, unpublished manuscript.

[Br1] M. Broué, Isométries parfaites, types de blocs, catégories dérivées, Astérisque 181-182 (1990), 61-92.

[Br2] M. Broué, Les -blocs des groupes GLn,q et Un,q 2 et leurs structures locales, Astérisque 133-134 (1986), 159-188.

[BrMa] M. Broué and G. Malle, Théorèmes de Sylow génériques pour les groupes réductifs sur les corps finis, Math. Ann. 292 (1992), 241-262.

[BrMa2] M. Broué and G. Malle, Zyklotomische Heckealgebren, This issue (1993).

[BrMi] M. Broué and J. Michel, Blocs et séries de Lusztig dans un groupe réductif fini, J. reine angew. Math. 395 (1989), 56-67.

[Ca] R. W. Carter, Finite groups of Lie type: Conjugacy classes and complex characters, John Wiley and Sons, Chichester, 1985.

[Co] A. M. Cohen, Finite complex reflection groups, Ann. scient. Éc. Norm. Sup. 9 (1976), 379-436.

[DeLu] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Annals of Math. 103 (1976), 103-161.

[DiMi1] F. Digne and J. Michel, On Lusztig's parametrization of characters of finite groups of Lie type, Astérisque 181-182 (1990), 113-156.

[DiMi2] F. Digne and J. Michel, Representations of finite groups of Lie type, Cambridge University Press, Cambridge, 1990.

[DiMi3] F. Digne and J. Michel, Lusztig functor and Shintani descent, Rapport de Recherche du LMENS 2 (1989), Publications du DMI, ENS Paris.

[En1] M. Enguehard, Isométries parfaites entre blocs de groupes symétriques, Astérisque 181-182 (1990), 157-171.

[En2] M. Enguehard, Positivité de l'application de Lusztig, Publications du L.M.E.N.S. (1992).

[FoSr] P. Fong and B. Srinivasan, Generalized Harish-Chandra theory for unipotent characters of finite classical groups, J. Algebra 104 (1986), 301-309.

[Ge] M. Geek, On the classification of -blocks of finite groups of Lie type, J. Algebra 149 (1992).

[GeHi] M. Geck and G. Hiβ, Basic sets of Brauer characters of finite groups of Lie type, J. reine angew. Math. 418 (1991), 173-178.

[HoLe] R. B. Howlett and G. I. Lehrer, Representations of generic algebras and finite groups of Lie type, Trans. Am. Math. Soc. 280 (1983), 753-779.

[JaKe] G. James and A. Kerber, The representation theory of the symmetric group, Addison Wesley, London, 1981.

[Lu1] G. Lusztig, Characters of reductive groups over a finite field, Annals of Mathematical Studies, no 107, Princeton University Press, Princeton, New Jersey, 1984.

[Lu2] G. Lusztig, On the finiteness of the number of unipotent classes, Invent. math. 34 (1976), 201-213.

[LuSr] G. Lusztig and B. Srinivasan, The characters of the finite unitary groups, J. Algebra 49 (1977), 167-171.

[NPP] J. Neubüser, H. Pahlings and W. Plesken, CAS; Design and use of a system for the handling of characters of finite groups, in: Computational group theory, Academic Press, 1984, pp. 195-247.

[Ol] J. B. Olsson, Remarks on symbols, hooks and degrees of unipotent characters, J. Combinatorics A 42 (1986), 223-238.

[Os] M. Osima, On the representations of the generalized symmetric group, Math. J. Okayama Univ. 4 (1954), 39-56.

[Rob] G. Robinson, Group algebras over semi-local rings, J. Algebra 117 (1988), 409-418.

[RoSt] G. Robinson and R. Staszewski, On π-subpairs and the Third Main Theorem for π-Blocks, J. Algebra 126 (1989), 310-326.

[Rou] R. Rouquier, Sur les blocs à groupe de défaut abélien dans les groupes symétriques (1991) (to appear).

[Sch] K. - D. Schewe, Blöcke exzeptioneller Chevalley-Gruppen, Dissertation, Bonner Mathematische Schriften, nr 165, Bonn, 1985.

[Sho1] T. Shoji, Some generalization of Asai's result for classical groups, in: Advanced Studies in Pure Math. - Algebraic groups and related topics, vol. 6, 1985, pp. 207-229.

[Sho2] T. Shoji, Shintani descent for exceptional groups over a finite field, J. Fac. Sci. Univ. Tokyo 34 (1987), 599-653.

[Sp1] T. A. Springer, Regular elements of finite reflection groups, Invent. math. 25 (1974), 159-198.

[Sp2] T. A. Springer, Linear algebraic groups, Birkhäuser, Boston-Basel-Stuttgart, 1981.

[SpSt] T. A. Springer and R. Steinberg, Conjugacy classes, in: Seminar on algebraic groups and related finite groups, Lecture Notes in Mathematics, vol. 131, Springer-Verlag, Berlin Heidelberg, 1970.