The packing measure of the graph of a stable process
Colloque Paul Lévy sur les processus stochastiques, Astérisque, no. 157-158 (1988), p. 341-362
@incollection{AST_1988__157-158__341_0,
     author = {Rezakhanlou, Fraydoun and Taylor, S. James},
     title = {The packing measure of the graph of a stable process},
     booktitle = {Colloque Paul L\'evy sur les processus stochastiques},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {157-158},
     year = {1988},
     pages = {341-362},
     zbl = {0677.60082},
     language = {en},
     url = {http://www.numdam.org/item/AST_1988__157-158__341_0}
}
Rezakhanlou, Fraydoun; Taylor, S. James. The packing measure of the graph of a stable process, in Colloque Paul Lévy sur les processus stochastiques, Astérisque, no. 157-158 (1988), pp. 341-362. http://www.numdam.org/item/AST_1988__157-158__341_0/

1. M. T. Barlow. Continuity of local times for Levy processes. Zeitschrift f. Wahrsch. 69 (1985), 23-35. | Article | Zbl 0561.60076

2. M. T. Barlow. Necessary and sufficient conditions for the continuity of local time of Lévy processes. To appear. Annals of Probability. | Zbl 0666.60072

3. M. Jain and W. B. Pruitt. The correct measure function for the graph of a transient stable process. Zeitschrift f. Wahrsch. 9 (1968), 131-138. | Article | Zbl 0273.60040

4. J. F. Le Gall and S. J. Taylor. The packing measure of planar Brownian motion. Seminar on Stochastic Processes, Birkhauser (1986), 139-148. | Zbl 0619.60074

5. P. Lévy. La mesure de Hausdorff de la courbe du mouvement brownien. Giovn Ist Ital. Attuari 16 (1953), 1-37. | Zbl 0053.10101

6. W. E. Pruitt and S. J. Taylor. The potential kernel and hitting probabilities for the general stable process in 𝐑 N . Trans. Amer. Math. Soc. 146 (1969), 299-321. | Zbl 0229.60052

7. W. E. Pruitt and S. J. Taylor. Sample path properties of processes with stable components. Zeitschrift f. Wahrsch. 12 (1969), 267-289. | Article | Zbl 0181.21103

8. W. E. Pruitt and S. J. Taylor. Hausdorff measure properties of the asymmetric Cauchy processes. Annals Prob. 5 (1977), 608-615. | Article | Zbl 0371.60049

9. W. E. Pruitt and S. J. Taylor. The packing dimension of the sample path of a Lévy process. In preparation.

10. X. S. Raymond and C. Tricot. Packing regularity of sets in n-space. Preprint. | Article | Zbl 0639.28005

11. F. Rezakhanlou. The packing measure of the graph and level sets of continuous functions. Preprint. | Article | Zbl 0657.28006

12. S. J. Taylor. Sample path properties of a transient-stable process. J. Math. Mechanics 16 (1967), 1229-1246. | Zbl 0178.19301

13. S. J. Taylor. The use of packing measure in the analysis of random sets. Stochastic Processes and their Applications. Springer Lecture Notes 1203 (1985), 214-222. | Zbl 0607.60033

14. S. J. Taylor. The measure theory of random fractals. Math. Proc. Camb. Phil. Soc. 100 (1986), 383-406. | Article | Zbl 0622.60021

15. S. J. Taylor and C. Tricot. Packing measure and its evaluation for a Brownian path. Trans. Amer. Math. Soc. 288 (1985), 679-699. | Article | Zbl 0537.28003

16. S. J. Taylor and C. Tricot. The packing measure of rectifiable subsets of the plane. Math. Proc. Camb. Phil. Soc. 99 (1986), 285-296. | Article | Zbl 0604.28004

17. S. J. Taylor and J. G. Wendel. The exact Hausdorff measure of the zero set of a stable process. Zeitschrift f. Wahrsch. 6 (1966), 170-180. | Article | Zbl 0178.52702