Recent progress in rigorous percolation theory
Colloque Paul Lévy sur les processus stochastiques, Astérisque, no. 157-158 (1988), p. 217-231
@incollection{AST_1988__157-158__217_0,
     author = {Kesten, Harry},
     title = {Recent progress in rigorous percolation theory},
     booktitle = {Colloque Paul L\'evy sur les processus stochastiques},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {157-158},
     year = {1988},
     pages = {217-231},
     zbl = {0658.60132},
     language = {en},
     url = {http://www.numdam.org/item/AST_1988__157-158__217_0}
}
Kesten, Harry. Recent progress in rigorous percolation theory, in Colloque Paul Lévy sur les processus stochastiques, Astérisque, no. 157-158 (1988), pp. 217-231. http://www.numdam.org/item/AST_1988__157-158__217_0/

[1] M. Aizenman and D. J. Barsky, Sharpness of the phase transition in percolation models, Comm. Math. Phys. 108 (1987), 489-526. | Article | Zbl 0618.60098

See also D. J. Barsky's Ph.D. thesis, Rutgers University, 1987.

[2] M. Aizenman, H. Kesten and C. M. Newman, Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation, Comm. Math. Phys. (1987). | Zbl 0642.60102

[3] M. Aizenman and C. M. Newman, Tree graph inequalities and critical behavior in percolation models, J. Stat. Phys. 36 (1984), 107-143. | Article | Zbl 0586.60096

[4] M. Aizenman and C. M. Newman, Discontinuity of the percolation density in one-dimensional 1|x-y| 2 percolation models, Comm. Math. Phys. 107 (1986), 611-648. | Article | Zbl 0613.60097

[5] S. R. Broadbent and J. M. Hammersley, Percolation processes, Proc. Cambr. Phil. Soc. 53 (1957), 629-641 and 642-645. | Article | Zbl 0091.13901

[6] J. T. Chayes and L. Chayes, Percolation and Random Media, in Critical Phenomena, Random Systems and Gauge Theories. Les Houches Session XLIII (1984), K. Osterwalder and R. Storm, eds., Elsevier Science Publishers, 1986. | Zbl 0661.60120

[7] J. T. Chayes and L. Chayes, The mean field bound for the order parameter of Bernoulli percolation, IMA Publ. in Math. and its Appl., vol. 8 (1987), 49-71, H. Kesten, ed., Springer-Verlag. | Zbl 0621.60111

[8] J. T. Chayes and L. Chayes, On the upper critical dimension of Bernoulli percolation, preprint, 1987. | Zbl 0627.60100

[9] J. T. Chayes, L. Chayes, G. Grimmett, H. Kesten and R. Schonmann, preprint (1987).

[10] M. Fisher, Critical probabilities for cluster size and percolation problems, J. Math. Phys. 2 (1961), 620-627. | Article | Zbl 0105.43602

[11] A. Gandolfi, Uniqueness of the infinite cluster for stationary Gibbs states, to appear. | Article | Zbl 0694.60096

[12] A. Gandolfi, G. Grimmett and L. Russo, On the uniqueness of the infinite cluster in the percolation model, to appear. | Article | Zbl 0649.60104

[13] A. Gandolfi, M. Keane and L. Russo, On the uniqueness of the infinite occupied cluster in two-dimensional site percolation, to appear. | Article | Zbl 0658.60133

[14] G. Grimmett, Percolation, to appear.

[15] J. M. Hammersley, Bornes supérieures de la probabilité critique dans un processus de filtration, pp. 17-37 in Le Calcul des Probabilités et ses Applications CNRS, Paris (1959). | Zbl 0096.11502

[16] T. E. Harris, A lower bound for the critical probability in a certain percolation process, Proc. Cambr. Phil. Soc. 56 (1960), 13-20. | Article | Zbl 0122.36403

[17] H. Kesten, The critical probability of bond percolation on 2 equals 1 2, Comm. Math. Phys. 74 (1980), 41-59. | Article | Zbl 0441.60010

[18] H. Kesten, Percolation Theory for Mathematicians, Birkhäuser, 1982. | Article | Zbl 0522.60097

[19] H. Kesten, A scaling relation at criticality for 2D-percolation, IMA Publ. in Math. and its Appl., vol. 8 (1987), 203-212, H. Kesten, ed., Springer-Verlag. | Zbl 0631.60105

[20] H. Kesten, Scaling relations for 2D-percolation, Comm. Math. Phys. 109 (1987), 109-156. | Article | Zbl 0616.60099

[21] M. V. Menshikov, S. A. Molchanov and A. F. Sidorenko, Percolation theory and some applications, Itogi Nauki i Techniki, Series of Probability Theory, Mathematical Statistics and Theoretical Cybernetics, 24 (1986), 53-110. | Zbl 0647.60103

[22] B. G. Nguyen, Correlation lengths for percolation processes, J. Stat. Phys. 46 (1987), 517-523. | Article | Zbl 0682.60105

[23] L. Russo, A note on percolation, Z. Wahrsch. verw. Geb. 43 (1978), 39-48. | Article | Zbl 0363.60120

[24] L. Russo, On the critical percolation probabilities, Z. Wahrsch. verw. Geb. 56 (1981), 229-237. | Article | Zbl 0457.60084

[25] P. D. Seymour and D. J. A. Welsh, Percolation probabilities on the square lattice, Ann. Discrete Math., 3 (1978), 227-245. | Article | Zbl 0405.60015

[26] D. Stauffer, Scaling theory of percolation clusters, Phys. Reports 54, No. 1 (1979), 1-74. | Article

[27] D. Stauffer, Scaling properties of percolation clusters, Lecture Notes in Physics, Vol. 149 (1981), 9-25, C. Castellani, C. D. Castro, L. Peliti, eds., Springer-Verlag.

[28] M. F. Sykes and J. W. Essam, Exact critical percolation probabilities for site and bond problems in two dimensions, J. Math. Phys. 5 (1964), 1117-1127. | Article

[29] H. Tasaki, Hyperscaling inequalities for percolation, Preprint (1987). | Article | Zbl 0627.60101

[30] B. Toth, A lower bound for the critical probability of the square lattice site percolation, Z. Wahrsch. verw. Geb. 69 (1985), 19-22. | Article | Zbl 0552.60098

[31] J. Van Den Berg and M. Keane, On the continuity of the percolation probability function, Contemp. Math. 26 (1984), 61-65. | Article | Zbl 0541.60099

[32] J. C. Wierman, Bond percolation on honeycomb and triangular lattices, Adv. Appl. Prob. 13 (1981), 293-313. | Article | Zbl 0457.60085