Representation for functionals of superprocesses by multiple stochastic integrals, with applications to self-intersection local times
Colloque Paul Lévy sur les processus stochastiques, Astérisque, no. 157-158 (1988), p. 147-171
@incollection{AST_1988__157-158__147_0,
     author = {Dynkin, Eugene B.},
     title = {Representation for functionals of superprocesses by multiple stochastic integrals, with applications to self-intersection local times},
     booktitle = {Colloque Paul L\'evy sur les processus stochastiques},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {157-158},
     year = {1988},
     pages = {147-171},
     zbl = {0659.60105},
     language = {en},
     url = {http://www.numdam.org/item/AST_1988__157-158__147_0}
}
Dynkin, Eugene B. Representation for functionals of superprocesses by multiple stochastic integrals, with applications to self-intersection local times, in Colloque Paul Lévy sur les processus stochastiques, Astérisque, no. 157-158 (1988), pp. 147-171. http://www.numdam.org/item/AST_1988__157-158__147_0/

[1] D. A. Dawson, Stochastic evolution equations and related measure processes, J. Multivariant Analysis 3 (1975), 1-52. | Zbl 0299.60050

[2] D. A. Dawson, The critical measure diffusion process, Z. Wahrsheinlichkeitstheorie und Verw. Gebiete 40 (1977), 125-145. | Article | Zbl 0343.60001

[3] D. A. Dawson, Measure-valued processes, qualitative behaviour and stochastic geometry, Preprint, 1986. | Zbl 0604.60047

[4] E. B. Dynkin, Markov processes, Springer-Verlag, 1965. | Zbl 0132.37901

[5] E. B. Dynkin, Multiple path integrals, Advan. Appl. Math. 7 (1986), 205-219. | Article | Zbl 0604.60075

[6] E. B. Dynkin, Self-intersection local times, occupation fields and stochastic integrals, Advan.Math. 65 (1987), 254-271. | Article | Zbl 0625.60089

[7] E. B. Dynkin, Superprocesses and their linear additive functionals, Submitted to Trans.Amer.Math.Soc. | Zbl 0674.60070

[8] E. B. Dynkin, R. K. Getoor, Additive functionals and entrance laws, J. Funct. Anal., 62 (1985), 221-265. | Article | Zbl 0574.60082

[9] E. B. Dynkin, S. E. Kuznetsov, Determining functions of Markov processes and corresponding dual regular classes, Soviet Math.-Doklady 15 (1974), 20-23. | Zbl 0334.60032

[10] I. Iscoe, A weighted occupation time for a class of measure-valued branching processes, Probab.Th.Rel.Fields 71 (1986), 85-116. | Article | Zbl 0555.60034

[11] I. Iscoe, Ergodic theory and local occupation time for measure-valued critical branching Brownian motion, Stochastics, 18 (1986), 197-243. | Article | Zbl 0608.60077

[12] M. Metivier, Semimartingales, Walter de Gruyter, 1982. | Zbl 0503.60054

[13] E. A. Perkins, A space-time property of a class of measure-valued branching diffusions, Preprint, 1986. | Zbl 0641.60060

[14] S. Roelly-Coppoletta, A criterion of convergence of measure-valued processes: application to measure branching processes, Stochastics, 17 (1986), 43-65. | Article | Zbl 0598.60088

[15] J. Walsh, An introduction to stochastic partial differential equations, In École d'Été de Probabilités de Saint-Flour XIV - 1984, 266-439, Springer-Verlag, 1986. | Zbl 0608.60060

[16] S. Watanabe, A limit theorem of branching processes and continuous state branching processes, J.Math.Kyoto Univ. 8 (1968), 141-167. | Article | Zbl 0159.46201

[17] E. Wild, On Boltzmann's equation in the kinetic theory of gases, Proc.Camb.Phil.Soc. 47 (1951), 602-609. | Article | Zbl 0043.43703