La complexité du calcul des polynômes
Journées algorithmiques, Astérisque, no. 38-39 (1976), pp. 265-274.
@incollection{AST_1976__38-39__265_0,
     author = {Van de Wiele, J. P.},
     title = {La complexit\'e du calcul des polyn\^omes},
     booktitle = {Journ\'ees algorithmiques},
     author = {Collectif},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {38-39},
     year = {1976},
     zbl = {0364.65009},
     mrnumber = {460271},
     language = {fr},
     url = {http://www.numdam.org/item/AST_1976__38-39__265_0/}
}
TY  - CHAP
AU  - Van de Wiele, J. P.
TI  - La complexité du calcul des polynômes
BT  - Journées algorithmiques
AU  - Collectif
T3  - Astérisque
PY  - 1976
DA  - 1976///
IS  - 38-39
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_1976__38-39__265_0/
UR  - https://zbmath.org/?q=an%3A0364.65009
UR  - https://www.ams.org/mathscinet-getitem?mr=460271
LA  - fr
ID  - AST_1976__38-39__265_0
ER  - 
%0 Book Section
%A Van de Wiele, J. P.
%T La complexité du calcul des polynômes
%B Journées algorithmiques
%A Collectif
%S Astérisque
%D 1976
%N 38-39
%I Société mathématique de France
%G fr
%F AST_1976__38-39__265_0
Van de Wiele, J. P. La complexité du calcul des polynômes, in Journées algorithmiques, Astérisque, no. 38-39 (1976), pp. 265-274. http://www.numdam.org/item/AST_1976__38-39__265_0/

1) Borodin A. [71] . "Horner's rule is uniquely optimal", in Theory of Machines and Computation, Academic Press, New-York. | MR

2) Borodin A., Cook S. [74] . "On the number of additions to compute specific polynomials". Proc. 6th Annual ACM Symp. on Theory of Computing, pp. 342-347. | MR | Zbl

3) Borodin A., Munro I. [75]. "The computational complexity of algebraic and numeric problems". Elsevier Computer Science Library. | MR | Zbl

4) Hyafil L., Van De Wiele [75]. "On the additive complexity of specific polynomials". Information Processing Letters. Vol. 4 N° 2, Nov. 75. | DOI | MR | Zbl

5) Knuth D. E. [69]. "The art of computer programming : semi-numerical algorithms, vol. II, Addison-Wesley, Reading, Mass. | MR

6) Lipton [75]. "Polynomials with 0-1 coefficients that are hard to evaluate". IBM Research Report, RC 5612. | MR

7) Paterson-Stockmeyer [73]. "On the number of non scalar multiplications necessary to evaluate polynomials", SIAM J. Computing 2 : 60-66, 1973. | DOI | MR | Zbl

8) Strassen V. [74]. "Polynomials with rational coefficients which are hard to compute". SIAM J. Computing 3 : 128-148, 1974. | DOI | MR | Zbl

9) Van De Wiele [76]. Rapport LABORIA à paraître.