Local Exchange Potentials for Electronic Structure Calculations
MathematicS In Action, Tome 2 (2009) no. 1, pp. 1-42.

The Hartree-Fock exchange operator is an integral operator arising in the Hartree-Fock model as well as in some instances of the density functional theory. In a number of applications, it is convenient to approximate this integral operator by a multiplication operator, i.e. by a local potential. This article presents a detailed analysis of the mathematical properties of various local approximations to the nonlocal Hartree-Fock exchange operator including the Slater potential, the optimized effective potential (OEP), the Krieger-Li-Iafrate (KLI) approximation and the common-energy denominator approximation (CEDA) to the OEP, and the effective local potential (ELP). In particular, we show that the Slater, KLI, CEDA and ELP potentials all can be defined as solutions of certain variational problems, and we provide a rigorous derivation of the OEP integral equation. We also establish an existence result for a coupled system of nonlinear partial differential equations introduced by Slater to approximate the Hartree-Fock equations.

Publié le :
DOI : https://doi.org/10.5802/msia.2
Classification : 35P30,  81Q05,  35J60
Mots clés : Hartree-Fock model, Density Functional theory, nonlinear eigenvalue problem
@article{MSIA_2009__2_1_1_0,
     author = {Canc\`es, Eric and Stoltz, Gabriel and Scuseria, Gustavo E. and Staroverov, Viktor N. and Davidson, Ernest R.},
     title = {Local {Exchange} {Potentials} for {Electronic} {Structure} {Calculations}},
     journal = {MathematicS In Action},
     pages = {1--42},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {2},
     number = {1},
     year = {2009},
     doi = {10.5802/msia.2},
     zbl = {1177.47092},
     mrnumber = {2520849},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/msia.2/}
}
TY  - JOUR
AU  - Cancès, Eric
AU  - Stoltz, Gabriel
AU  - Scuseria, Gustavo E.
AU  - Staroverov, Viktor N.
AU  - Davidson, Ernest R.
TI  - Local Exchange Potentials for Electronic Structure Calculations
JO  - MathematicS In Action
PY  - 2009
DA  - 2009///
SP  - 1
EP  - 42
VL  - 2
IS  - 1
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://www.numdam.org/articles/10.5802/msia.2/
UR  - https://zbmath.org/?q=an%3A1177.47092
UR  - https://www.ams.org/mathscinet-getitem?mr=2520849
UR  - https://doi.org/10.5802/msia.2
DO  - 10.5802/msia.2
LA  - en
ID  - MSIA_2009__2_1_1_0
ER  - 
Cancès, Eric; Stoltz, Gabriel; Scuseria, Gustavo E.; Staroverov, Viktor N.; Davidson, Ernest R. Local Exchange Potentials for Electronic Structure Calculations. MathematicS In Action, Tome 2 (2009) no. 1, pp. 1-42. doi : 10.5802/msia.2. http://www.numdam.org/articles/10.5802/msia.2/

[1] Bach, V.; Lieb, E. H.; Loss, M.; Solovej, J.-P. There are no unfilled shells in unrestricted Hartree-Fock theory, Phys. Rev. Lett., Volume 72 (1994), pp. 2981-2983 | Article

[2] Ben-Haj-Yedder, A.; Cancès, E.; Bris, C. Le Mathematical remarks on the optimized effective potential problem, Differential and Integral Equations, Volume 17 (2004), pp. 331-368 | MR 2037981 | Zbl 1224.35102

[3] Bris, C. Le PhD thesis, Ecole Polytechnique, 1993

[4] Cancès, E. SCF algorithms for Hartree-Fock electronic calculations, Lecture Notes in Chemistry, Volume 74 (2001), pp. 17-43 | Article

[5] Cancès, E.; Bris, C. Le Can we outperform the DIIS approach for electronic structure calculations?, Int. J. Quantum Chem., Volume 79 (2000), pp. 82-90 | Article

[6] Cancès, E.; Defranceschi, M.; Kutzelnigg, W.; Bris, C. Le; Maday, Y.; Ciarlet, P.G.; Le Bris, C. Computational quantum chemistry: A primer, Handbook of Numerical Analysis (Special volume on computational chemistry), Volume X, Elsevier, 2003, pp. 3-270 | Zbl 1070.81534

[7] Cancès, E.; Le Bris, C. On the convergence of the SCF algorithms for the Hartree-Fock equations, Math. Meth. Numer. Anal., Volume 34 (2000), pp. 749-774 | Article | Numdam | MR 1784484 | Zbl 1090.65548

[8] Davidson, E. R. Reduced Density Matrices in Quantum Chemistry, Academic Press, New-York, 1976

[9] de Castro, E. V. R.; Jorge, F. E. Accurate universal Gaussian basis set for all atoms of the Periodic Table, J. Chem. Phys., Volume 108 (1998), pp. 5225-5229 | Article

[10] Gaiduk, A. P.; Staroverov, V. N. Virial exchange energies from model exact-exchange potentials, J. Chem. Phys., Volume 128 (2008), 204101 pages

[11] Grabo, T.; Kreibich, T.; Kurth, S.; Gross, E. K. U.; Anisimov, V.I. Orbital functionals in density functional theory: the optimized effective potential method, Strong Coulomb Correlations in Electronic Structure Calculations: Beyond the Local Density Approximation, Gordon and Breach, 2000, pp. 203-311

[12] Gritsenko, O. V.; Baerends, E. J. Orbital structure of the Kohn-Sham exchange potential and exchange kernel and the field-counteracting potential for molecules in an electric field, Phys. Rev. A, Volume 64 (2001), 042506 pages

[13] Görling, A.; Hesselmann, A.; Jones, M.; Levy, M. Relation between exchange-only optimized potential and Kohn–Sham methods with finite basis sets, and effect of linearly dependent products of orbital basis functions, J. Chem. Phys., Volume 128 (2008), 104104 pages | Article

[14] Heaton-Burgess, T.; Bulat, F. A.; Yang, W. Optimized Effective Potentials in Finite Basis Sets, Phys. Rev. Lett., Volume 98 (2007), 256401 pages | Article

[15] Heaton-Burgess, T.; Yang, W. Optimized effective potentials from arbitrary basis sets, J. Chem. Phys., Volume 129 (2008), 194102 pages | Article

[16] Hesselmann, A.; Görling, A. Comparison between optimized effective potential and Kohn-Sham methods, Chem. Phys. Lett., Volume 455 (2008), pp. 110 -119 | Article

[17] Hesselmann, A.; Götz, A. W.; Sala, F. Della; Görling, A. Numerically stable optimized effective potential method with balanced Gaussian basis sets, J. Chem. Phys., Volume 127 (2007), 054102 pages | Article

[18] Holas, A.; Cinal, M. Exact and approximate exchange potentials investigated in terms of their matrix elements with the Kohn-Sham orbitals, Phys. Rev. A, Volume 72 (2005), 032504 pages | Article

[19] Ivanov, S.; Levy, M. Connections between ground-state energies from optimized-effective potential exchange-only and Hartree-Fock methods, J. Chem. Phys., Volume 119 (2003), pp. 7087-7093 | Article

[20] Izmaylov, A. F.; Staroverov, V. N.; Scuseria, G. E.; Davidson, E. R.; Stoltz, G.; Cancès, E. The effective local potential method: Implementation for molecules and relation to approximate optimized effective potential techniques, J. Chem. Phys., Volume 126 (2007), 084107 pages

[21] Kim, Y.; Görling, A. Excitonic Optical Spectrum of Semiconductors Obtained by Time-Dependent Density-Functional Theory with the Exact-Exchange Kernel, Phys. Rev. Lett., Volume 89 (2002), 096402 pages

[22] Kollmar, C.; Filatov, M. Optimized effective potential method: Is it possible to obtain an accurate representation of the response function for finite orbital basis sets?, J. Chem. Phys., Volume 127 (2007), 114104 pages | Article

[23] Krieger, J. B.; Li, Y.; Iafrate, G. J. Construction and application of an accurate local spin-polarized Kohn-Sham potential with integer discontinuity: Exchange-only theory, Phys. Rev. A, Volume 45 (1992), pp. 101-126 | Article

[24] Kudin, K. N.; Scuseria, G. E. Converging self-consistent field equations in quantum chemistry - recent achievements and remaining challenges, M2AN, Volume 41 (2007) no. 2, pp. 281-296 | Article | Numdam | MR 2339629 | Zbl 1135.81381

[25] Kudin, K. N.; Scuseria, G. E.; Cancès, E. A black-box self-consistent field convergence algorithm: one step closer, J. Chem. Phys., Volume 116 (2002), pp. 8255-8261 | Article

[26] Kümmel, S.; Kronik, L. Orbital-dependent density functionals: Theory and applications, Rev. Mod. Phys., Volume 80 (2008), pp. 3-60 | Article | MR 2390217 | Zbl 1205.81153

[27] Kümmel, S.; Perdew, J. P. Simple Iterative Construction of the Optimized Effective Potential for Orbital Functionals, Including Exact Exchange, Phys. Rev. Lett., Volume 90 (2003), 043004 pages | Article

[28] Lax, P. Functional Analysis, Wiley-Interscience, New-York, 2002

[29] Leeuwen, R. Van The Sham-Schlüter Equation in Time-Dependent Density-Functional Theory, Phys. Rev. Lett., Volume 76 (1996), pp. 3610-3613 | Article

[30] Lieb, E. H. Variational principle for many-fermion systems, Phys. Rev. Lett., Volume 46 (1981), pp. 457-459 | Article | MR 601336

[31] Lieb, E. H. Density functionals for Coulomb systems, Int. J. Quantum Chem., Volume 24 (1983), pp. 243-277 | Article

[32] Lieb, E. H. Bound of the maximum negative ionization of atoms and molecules, Phys. Rev. A, Volume 29 (1984), pp. 3018-3028 | Article

[33] Lieb, E. H.; Simon, B. The Hartree-Fock theory for Coulomb systems, Commun. Math. Phys., Volume 53 (1977), pp. 185-194 | Article | MR 452286

[34] Lions, P.-L. The concentration-compactness principle in the calculus of variations. The locally compact case, Ann. Inst. H. Poincaré, Volume 1 (1984), p. 109-145 and 223-283 | Article | Numdam | MR 778970 | Zbl 0704.49004

[35] Lions, P.-L. Solutions of Hartree-Fock equations for Coulomb systems, Commun. Math. Phys., Volume 109 (1987), pp. 33-97 | Article | MR 879032 | Zbl 0618.35111

[36] Marques, M. A.; Ullrich, C. A.; Nogueira, F.; Rubio, A.; Burke, K.; (Eds.), E. K. U. Gross Time-Dependent Density Functional Theory, Springer, 2006 | Article

[37] Reed, M.; Simon, B. Methods of Modern Mathematical Physics, I - IV, Academic Press, 1975-1980

[38] Roothaan, C. C. J. New developments in molecular orbital theory, Rev. Mod. Phys., Volume 23 (1951), pp. 69-89 | Article | Zbl 0045.28502

[39] Rudin, W. Real and Complex Analysis, McGraw-Hill, New-York, 1987 | Zbl 0925.00005

[40] Sala, F. Della; Görling, A. Efficient localized Hartree-Fock methods as effective exact-exchange Kohn-Sham methods for molecules, J. Chem. Phys., Volume 115 (2001), pp. 5718-5731 | Article

[41] Sharp, R. T.; Horton, G. K. A variational approach to the unipotential many-electron problem, Phys. Rev., Volume 90 (1953), 317 pages

[42] Slater, J. C. A simplification of the Hartree-Fock Method, Phys. Rev., Volume 81 (1951), pp. 385-390 | Article | Zbl 0042.23202

[43] Solovej, J.-P. The ionization conjecture in Hartree-Fock theory, Annals of Math., Volume 158 (2003), pp. 509-576 | Article | MR 2018928 | Zbl 1106.81081

[44] Staroverov, V. N.; Scuseria, G. E.; Davidson, E. R. Optimized effective potentiels yielding Hartree-Fock energies and densities, J. Chem. Phys., Volume 124 (2006), 11103 pages

[45] Talman, J. D.; Shadwick, W. F. Optimized effective atomic central potential, Phys. Rev. A, Volume 14 (1976), pp. 36-40 | Article

[46] Ullrich, C. A.; Gossmann, U. J; Gross, E. K. U. Time-Dependent Optimized Effective Potential, Phys. Rev. Lett., Volume 74 (1995), pp. 872-875 | Article

[47] Wu, Q.; Yang, W. Algebraic equation and iterative optimization for the optimized effective potential in density functional theory, J. Theor. Comput. Chem., Volume 2 (2003) no. 4, pp. 627-638 | Article

[48] Yang, W.; Wu, Q. Direct method for the optimized effective potentials in density-functional theory, Phys. Rev. Lett., Volume 89 (2002), 143002 pages | Article

[49] Zeidler, E. Nonlinear Functional Analysis and its Applications. I. Fixed-Point Theorems, Springer, 1986

Cité par Sources :