Une variété abélienne définie sur un corps
An abelian variety defined over an algebraically closed field
Mots-clés : abelian variety, Jacobian, supersingular, superspecial,
@article{JTNB_2015__27_3_605_0, author = {Achter, Jeffrey D. and Pries, Rachel}, title = {Superspecial rank of supersingular abelian varieties and {Jacobians}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {605--624}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {27}, number = {3}, year = {2015}, doi = {10.5802/jtnb.916}, zbl = {06542876}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jtnb.916/} }
TY - JOUR AU - Achter, Jeffrey D. AU - Pries, Rachel TI - Superspecial rank of supersingular abelian varieties and Jacobians JO - Journal de théorie des nombres de Bordeaux PY - 2015 SP - 605 EP - 624 VL - 27 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://www.numdam.org/articles/10.5802/jtnb.916/ DO - 10.5802/jtnb.916 LA - en ID - JTNB_2015__27_3_605_0 ER -
%0 Journal Article %A Achter, Jeffrey D. %A Pries, Rachel %T Superspecial rank of supersingular abelian varieties and Jacobians %J Journal de théorie des nombres de Bordeaux %D 2015 %P 605-624 %V 27 %N 3 %I Société Arithmétique de Bordeaux %U https://www.numdam.org/articles/10.5802/jtnb.916/ %R 10.5802/jtnb.916 %G en %F JTNB_2015__27_3_605_0
Achter, Jeffrey D.; Pries, Rachel. Superspecial rank of supersingular abelian varieties and Jacobians. Journal de théorie des nombres de Bordeaux, Tome 27 (2015) no. 3, pp. 605-624. doi : 10.5802/jtnb.916. https://www.numdam.org/articles/10.5802/jtnb.916/
[1] M. H. Baker, « Cartier points on curves », Internat. Math. Res. Notices (2000), no. 7, p. 353-370. | MR | Zbl
[2] R. M. Crew, « Etale
[3] N. Dummigan, « The determinants of certain Mordell-Weil lattices », Amer. J. Math. 117 (1995), no. 6, p. 1409-1429. | MR | Zbl
[4] —, « Complete
[5] T. Ekedahl, « On supersingular curves and abelian varieties », Math. Scand. 60 (1987), no. 2, p. 151-178. | MR | Zbl
[6] A. Elkin & R. Pries, « Ekedahl-Oort strata of hyperelliptic curves in characteristic 2 », Algebra Number Theory 7 (2013), no. 3, p. 507-532. | MR | Zbl
[7] H. Friedlander, D. Garton, B. Malmskog, R. Pries & C. Weir, « The
[8] G. van der Geer & M. van der Vlugt, « Reed-Muller codes and supersingular curves. I », Compositio Math. 84 (1992), no. 3, p. 333-367. | Numdam | MR | Zbl
[9] —, « On the existence of supersingular curves of given genus », J. Reine Angew. Math. 458 (1995), p. 53-61. | MR
[10] B. H. Gross, « Group representations and lattices », J. Amer. Math. Soc. 3 (1990), no. 4, p. 929-960. | MR | Zbl
[11] J. P. Hansen, « Deligne-Lusztig varieties and group codes », in Coding theory and algebraic geometry (Luminy, 1991), Lecture Notes in Math., vol. 1518, Springer, Berlin, 1992, p. 63-81. | MR | Zbl
[12] N. Jacobson, The Theory of Rings, American Mathematical Society Mathematical Surveys, vol. II, American Mathematical Society, New York, 1943, vi+150 pages. | MR | Zbl
[13] A. J. de Jong & F. Oort, « Purity of the stratification by Newton polygons », J. Amer. Math. Soc. 13 (2000), no. 1, p. 209-241. | MR | Zbl
[14] H. Kraft, « Kommutative algebraische p-Gruppen (mit Anwendungen auf p-divisible Gruppen und abelsche Varietäten) », manuscript, University of Bonn, September 1975, 86 pp.
[15] H. W. Lenstra, Jr. & F. Oort, « Simple abelian varieties having a prescribed formal isogeny type », J. Pure Appl. Algebra 4 (1974), p. 47-53. | MR | Zbl
[16] K. Z. Li, « Classification of supersingular abelian varieties », Math. Ann. 283 (1989), no. 2, p. 333-351. | MR | Zbl
[17] K.-Z. Li & F. Oort, Moduli of supersingular abelian varieties, Lecture Notes in Mathematics, vol. 1680, Springer-Verlag, Berlin, 1998, iv+116 pages. | MR | Zbl
[18] J. I. Manin, « Theory of commutative formal groups over fields of finite characteristic », Uspehi Mat. Nauk 18 (1963), no. 6 (114), p. 3-90. | MR | Zbl
[19] B. Moonen, « Group schemes with additional structures and Weyl group cosets », in Moduli of abelian varieties (Texel Island, 1999), Progr. Math., vol. 195, Birkhäuser, Basel, 2001, p. 255-298. | MR | Zbl
[20] N. O. Nygaard, « Slopes of powers of Frobenius on crystalline cohomology », Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 4, p. 369-401 (1982). | Numdam | MR | Zbl
[21] T. Oda, « The first de Rham cohomology group and Dieudonné modules », Ann. Sci. École Norm. Sup. (4) 2 (1969), p. 63-135. | Numdam | MR | Zbl
[22] T. Oda & F. Oort, « Supersingular abelian varieties », in Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), Kinokuniya Book Store, Tokyo, 1978, p. 595-621. | MR | Zbl
[23] A. Ogus, « Supersingular
[24] F. Oort, « Subvarieties of moduli spaces », Invent. Math. 24 (1974), p. 95-119. | MR | Zbl
[25] —, « Which abelian surfaces are products of elliptic curves? », Math. Ann. 214 (1975), p. 35-47. | MR
[26] —, « A stratification of a moduli space of abelian varieties », in Moduli of abelian varieties (Texel Island, 1999), Progr. Math., vol. 195, Birkhäuser, Basel, 2001, p. 345-416. | MR
[27] —, « Abelian varieties isogenous to a Jacobian », Rend. Sem. Mat. Univ. Padova 113 (2005), p. 165-172.
[28] —, « Minimal
[29] R. Pries & C. Weir, « Ekedahl-Oort type of Jacobians of Hermitian curves », to appear in Asian J. Math., . | arXiv
[30] H.-G. Rück & H. Stichtenoth, « A characterization of Hermitian function fields over finite fields », J. Reine Angew. Math. 457 (1994), p. 185-188. | MR | Zbl
[31] J. Scholten & H. J. Zhu, « Hyperelliptic curves in characteristic 2 », Int. Math. Res. Not. (2002), no. 17, p. 905-917. | MR | Zbl
[32] J.-P. Serre, Corps locaux, Hermann, Paris, 1968, Deuxième édition, Publications de l’Université de Nancago, No. VIII, 245 pages. | MR | Zbl
[33] T. Shioda, « Some remarks on Abelian varieties », J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), no. 1, p. 11-21. | MR | Zbl
[34] D. Subrao, « The
[35] J. Tate, « Endomorphisms of abelian varieties over finite fields », Invent. Math. 2 (1966), p. 134-144. | MR | Zbl
[36] D. L. Ulmer, «
Cité par Sources :