Low dimensional strongly perfect lattices. II: Dual strongly perfect lattices of dimension 13 and 15.
Journal de Théorie des Nombres de Bordeaux, Tome 25 (2013) no. 1, pp. 147-161.

Un réseau est dual fortement parfait si le réseau et son dual sont fortement parfaits. On démontre qu’il n’y a pas de réseau dual fortement parfait en dimension 13 et 15.

A lattice is called dual strongly perfect if both, the lattice and its dual, are strongly perfect. We show that there are no dual strongly perfect lattices of dimension 13 and 15.

DOI : https://doi.org/10.5802/jtnb.830
Classification : 11H06,  11H55
Mots clés : extreme lattices, spherical designs, strongly perfect lattices, dual strongly perfect lattices
@article{JTNB_2013__25_1_147_0,
     author = {Nebe, Gabriele and Nossek, Elisabeth and Venkov, Boris},
     title = {Low dimensional strongly perfect lattices.  {II:} {Dual} strongly perfect lattices of dimension 13 and 15.},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {147--161},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {25},
     number = {1},
     year = {2013},
     doi = {10.5802/jtnb.830},
     mrnumber = {3063835},
     zbl = {1271.11069},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jtnb.830/}
}
TY  - JOUR
AU  - Nebe, Gabriele
AU  - Nossek, Elisabeth
AU  - Venkov, Boris
TI  - Low dimensional strongly perfect lattices.  II: Dual strongly perfect lattices of dimension 13 and 15.
JO  - Journal de Théorie des Nombres de Bordeaux
PY  - 2013
DA  - 2013///
SP  - 147
EP  - 161
VL  - 25
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - http://www.numdam.org/articles/10.5802/jtnb.830/
UR  - https://www.ams.org/mathscinet-getitem?mr=3063835
UR  - https://zbmath.org/?q=an%3A1271.11069
UR  - https://doi.org/10.5802/jtnb.830
DO  - 10.5802/jtnb.830
LA  - en
ID  - JTNB_2013__25_1_147_0
ER  - 
Nebe, Gabriele; Nossek, Elisabeth; Venkov, Boris. Low dimensional strongly perfect lattices.  II: Dual strongly perfect lattices of dimension 13 and 15.. Journal de Théorie des Nombres de Bordeaux, Tome 25 (2013) no. 1, pp. 147-161. doi : 10.5802/jtnb.830. http://www.numdam.org/articles/10.5802/jtnb.830/

[1] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (1997), 235–265. (http://magma.maths.usyd.edu.au/magma/) | MR 1484478 | Zbl 0898.68039

[2] K. M. Anstreicher, Improved linear programming bounds for antipodal spherical codes. Discrete Comput. Geom. 28 (2002), 107–114. | MR 1904012 | Zbl 1175.90284

[3] H. Cohn, N.D. Elkies, New upper bounds on sphere packings I. Annals of Math. 157 (2003), 689–714. | MR 1973059 | Zbl 1041.52011

[4] R. Coulangeon, Spherical designs and zeta functions of lattices. International Mathematics Research Notices (2006). | MR 2272103 | Zbl 1159.11020

[5] J. Martinet, Perfect lattices in euclidean space. Springer Grundlehren 327 (2003). | MR 1957723 | Zbl 1017.11031

[6] G. Nebe, B. Venkov, The strongly perfect lattices of dimension 10. J. Théorie de Nombres de Bordeaux 12 (2000), 503–518. | Numdam | MR 1823200 | Zbl 0997.11049

[7] G. Nebe, B. Venkov, Low dimensional strongly perfect lattices I: The 12-dimensional case. L’enseignement Mathématique 51 (2005), 129–163. | MR 2154624 | Zbl 1124.11031

[8] G. Nebe, B. Venkov, Low dimensional strongly perfect lattices III: The dual strongly perfect lattices of dimension 14. Int. J. Number Theory 6 (2010), 387–409. | MR 2646763 | Zbl 1219.11103

[9] E. Nossek, On low dimensional strongly perfect lattices. PhD thesis, RWTH Aachen university, 2013.

[10] B. Venkov, Réseaux et designs sphériques. Monogr. Ens. Math. 37 (2001), 10–86. | MR 1878745 | Zbl 1139.11320

Cité par Sources :