In this paper we describe the set of conjugacy classes in the group . We expand geometric Gauss Reduction Theory that solves the problem for to the multidimensional case, where -reduced Hessenberg matrices play the role of reduced matrices. Further we find complete invariants of conjugacy classes in in terms of multidimensional Klein-Voronoi continued fractions.
Dans cet article, nous décrivons l’ensemble des classes de conjugaison dans le groupe . Nous étendons la théorie de réduction de Gauss géométrique qui résout le problème pour au cas multidimensionnel, où les matrices de Hessenberg -réduites jouent le rôle de matrices réduites. Ensuite, nous trouvons des invariants complets des classes de conjugaison dans en termes fractions continues multidimensionnelles de Klein-Voronoi.
@article{JTNB_2013__25_1_99_0,
author = {Karpenkov, Oleg},
title = {Multidimensional {Gauss} reduction theory for conjugacy classes of $\mathrm{SL}(n,\mathbb{Z})$},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {99--109},
year = {2013},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {25},
number = {1},
doi = {10.5802/jtnb.828},
zbl = {1273.11111},
mrnumber = {3063833},
language = {en},
url = {https://www.numdam.org/articles/10.5802/jtnb.828/}
}
TY - JOUR
AU - Karpenkov, Oleg
TI - Multidimensional Gauss reduction theory for conjugacy classes of $\mathrm{SL}(n,\mathbb{Z})$
JO - Journal de théorie des nombres de Bordeaux
PY - 2013
SP - 99
EP - 109
VL - 25
IS - 1
PB - Société Arithmétique de Bordeaux
UR - https://www.numdam.org/articles/10.5802/jtnb.828/
DO - 10.5802/jtnb.828
LA - en
ID - JTNB_2013__25_1_99_0
ER -
%0 Journal Article
%A Karpenkov, Oleg
%T Multidimensional Gauss reduction theory for conjugacy classes of $\mathrm{SL}(n,\mathbb{Z})$
%J Journal de théorie des nombres de Bordeaux
%D 2013
%P 99-109
%V 25
%N 1
%I Société Arithmétique de Bordeaux
%U https://www.numdam.org/articles/10.5802/jtnb.828/
%R 10.5802/jtnb.828
%G en
%F JTNB_2013__25_1_99_0
Karpenkov, Oleg. Multidimensional Gauss reduction theory for conjugacy classes of $\mathrm{SL}(n,\mathbb{Z})$. Journal de théorie des nombres de Bordeaux, Tome 25 (2013) no. 1, pp. 99-109. doi: 10.5802/jtnb.828
[1] H. Appelgate and H. Onishi, The similarity problem for integer matrices. Linear Algebra Appl. 42 (1982), 159–174. | Zbl | MR
[2] V. I. Arnold, Continued fractions (In Russian). Moscow Center of Continuous Mathematical Education, Moscow, 2002.
[3] J. Buchmann, A generalization of Voronoĭ’s unit algorithm. I. J. Number Theory 20(2) (1985), 177–191. | Zbl | MR
[4] J. Buchmann, A generalization of Voronoĭ’s unit algorithm. II. J. Number Theory 20(2) (1985), 192–209. | Zbl | MR
[5] F. J. Grunewald, Solution of the conjugacy problem in certain arithmetic groups. Word problems, II (Conf. on Decision Problems in Algebra, Oxford, 1976), 95 of Stud. Logic Foundations Math., North-Holland, Amsterdam, 1980, 101–139. | Zbl | MR
[6] O. Karpenkov, On the triangulations of tori associated with two-dimensional continued fractions of cubic irrationalities. Funct. Anal. Appl. 38(2) (2004), 102–110. Russian version: Funkt. Anal. Prilozh. 38(2) (2004), 28–37. | Zbl | MR
[7] O. Karpenkov, On Asymptotic Reducibility in . Technical report, arXiv:1205.4166, (2012).
[8] S. Katok, Continued fractions, hyperbolic geometry and quadratic forms. In MASS selecta, Amer. Math. Soc., Providence, RI, 2003, 121–160. | Zbl | MR
[9] F. Klein, Über eine geometrische Auffassung der gewöhnliche Kettenbruchentwicklung. Nachr. Ges. Wiss. Göttingen, Math-phys. Kl., 3:352–357, 1895.
[10] E. I. Korkina, The simplest -dimensional continued fraction. Topology, 3. J. Math. Sci. 82(5) (1996), 3680–3685. | Zbl | MR
[11] G. Lachaud, Voiles et polyhedres de Klein. Act. Sci. Ind., Hermann, 2002.
[12] Y. I. Manin and M. Marcolli, Continued fractions, modular symbols, and noncommutative geometry. Selecta Math. (N.S.), 8(3) (2002), 475–521. | Zbl | MR
[13] G. F. Voronoĭ, Algorithm of the generalized continued fraction (In Russian). In Collected works in three volumes, volume I. USSR Ac. Sci., Kiev, 1952.
Cité par Sources :






