Let be a rational prime. Let be a totally real number field which is unramified over . In this paper, we develop a theory of canonical subgroups for Hilbert–Blumenthal abelian varieties with -actions, in which they are related with Hodge–Tate maps if the -Hodge height is less than for every embedding .
Soit un nombre premier. Soit un corps totalement réel non ramifié en . Dans cet article, nous développons une théorie de sous-groupes canoniques pour les variétés abéliennes de Hilbert–Blumenthal avec -actions, dans laquelle ceux-ci sont liés à des applications de Hodge–Tate si la -hauteur de Hodge est plus petite que pour tout plongement .
Revised:
Accepted:
Published online:
DOI: 10.5802/jtnb.1029
Mots-clés : Hilbert–Blumenthal abelian variety, canonical subgroup
@article{JTNB_2018__30_2_355_0, author = {Hattori, Shin}, title = {On canonical subgroups of {Hilbert{\textendash}Blumenthal} abelian varieties}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {355--391}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {30}, number = {2}, year = {2018}, doi = {10.5802/jtnb.1029}, mrnumber = {3891317}, zbl = {1453.11082}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.1029/} }
TY - JOUR AU - Hattori, Shin TI - On canonical subgroups of Hilbert–Blumenthal abelian varieties JO - Journal de théorie des nombres de Bordeaux PY - 2018 SP - 355 EP - 391 VL - 30 IS - 2 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.1029/ DO - 10.5802/jtnb.1029 LA - en ID - JTNB_2018__30_2_355_0 ER -
%0 Journal Article %A Hattori, Shin %T On canonical subgroups of Hilbert–Blumenthal abelian varieties %J Journal de théorie des nombres de Bordeaux %D 2018 %P 355-391 %V 30 %N 2 %I Société Arithmétique de Bordeaux %U http://www.numdam.org/articles/10.5802/jtnb.1029/ %R 10.5802/jtnb.1029 %G en %F JTNB_2018__30_2_355_0
Hattori, Shin. On canonical subgroups of Hilbert–Blumenthal abelian varieties. Journal de théorie des nombres de Bordeaux, Volume 30 (2018) no. 2, pp. 355-391. doi : 10.5802/jtnb.1029. http://www.numdam.org/articles/10.5802/jtnb.1029/
[1] -adic families of Siegel modular cuspforms, Ann. Math., Volume 181 (2015) no. 2, pp. 623-697 | DOI | MR | Zbl
[2] On overconvergent Hilbert modular cusp forms, p-adic arithmetic of Hilbert modular forms (Astérisque), Volume 382, Société Mathématique de France, 2016, pp. 163-193 | Zbl
[3] Integral -adic Hodge theory, Algebraic geometry 2000 (Advanced Studies in Pure Mathematics), Volume 36, Mathematical Society of Japan, 2002, pp. 51-80 | DOI | MR | Zbl
[4] The -adic eigencurve is proper, Doc. Math., Volume extra vol. (2006), pp. 211-232 | MR | Zbl
[5] Companion forms and weight one forms, Ann. Math., Volume 149 (1999) no. 3, pp. 905-919 | DOI | MR | Zbl
[6] Higher-level canonical subgroups in abelian varieties (available at http://math.stanford.edu/ conrad/)
[7] Singularités des espaces de modules de Hilbert, en les caractéristiques divisant le discriminant, Compos. Math., Volume 90 (1994) no. 1, pp. 59-79 | Numdam | Zbl
[8] La filtration canonique des points de torsion des groupes -divisibles, Ann. Sci. Éc. Norm. Supér., Volume 44 (2011) no. 6, pp. 905-961 (avec la collaboration de Yichao Tian) | DOI | Numdam | MR | Zbl
[9] Canonical subgroups over Hilbert modular varieties, J. Reine Angew. Math., Volume 670 (2012), pp. 1-63 | DOI | MR | Zbl
[10] Éléments de géométrie algébrique IV. Étude locale des schémas et des morphismes de schémas I, Publ. Math., Inst. Hautes Étud. Sci., Volume 20 (1964), pp. 101-355 | Zbl
[11] On a properness of the Hilbert eigenvariety at integral weights: the case of quadratic residue fields (available at http://www.comm.tcu.ac.jp/shinh/)
[12] Ramification correspondence of finite flat group schemes over equal and mixed characteristic local fields, J. Number Theory, Volume 132 (2012) no. 10, pp. 2084-2102 | DOI | MR | Zbl
[13] Canonical subgroups via Breuil-Kisin modules, Math. Z., Volume 274 (2013) no. 3-4, pp. 933-953 | DOI | MR | Zbl
[14] On lower ramification subgroups and canonical subgroups, Algebra Number Theory, Volume 8 (2014) no. 2, pp. 303-330 | DOI | MR | Zbl
[15] Déformations de groupes de Barsotti-Tate (d’après A. Grothendieck), Seminar on arithmetic bundles: the Mordell conjecture (Astérisque), Volume 127, Société Mathématique de France, 1985, pp. 151-198 | MR | Zbl
[16] A gluing lemma and overconvergent modular forms, Duke Math. J., Volume 132 (2006) no. 3, pp. 509-529 | MR | Zbl
[17] Modularity lifting in parallel weight one, J. Am. Math. Soc., Volume 26 (2013) no. 1, pp. 199-225 | DOI | MR | Zbl
[18] Modularity lifting results in parallel weight one and applications to the Artin conjecture: the tamely ramified case, Forum Math. Sigma, Volume 2 (2014), e18, 58 pages (Article ID e18, 58 p.) | MR | Zbl
[19] -adic properties of modular schemes and modular forms, Modular functions of one variable, III (Antwerp, 1972) (Lecture Notes in Mathematics), Volume 350, Springer, 1973, pp. 69-190 | DOI | MR | Zbl
[20] The classification of -divisible groups over -adic discrete valuation rings, Math. Res. Lett., Volume 19 (2012) no. 1, pp. 121-141 | MR | Zbl
[21] Crystalline representations and -crystals, Algebraic geometry and number theory (Progress in Mathematics), Volume 253, Birkhäuser, 2006, pp. 459-496 | DOI | MR | Zbl
[22] Overconvergent Hilbert modular forms, Am. J. Math., Volume 127 (2005) no. 4, pp. 735-783 | DOI | MR | Zbl
[23] Relations between Dieudonné displays and crystalline Dieudonné theory, Algebra Number Theory, Volume 8 (2014) no. 9, pp. 2201-2262 | MR | Zbl
[24] Torsion -adic Galois representations and a conjecture of Fontaine, Ann. Sci. Éc. Norm. Supér., Volume 40 (2007) no. 4, pp. 633-674 | Numdam | MR | Zbl
[25] The correspondence between Barsotti-Tate groups and Kisin modules when , J. Théor. Nombres Bordx., Volume 25 (2013) no. 3, pp. 661-676 | Numdam | MR | Zbl
[26] Prolongement analytique sur les variétés de Siegel, Duke Math. J., Volume 157 (2011) no. 1, pp. 167-222 | MR | Zbl
[27] Analytic continuation of overconvergent Hilbert eigenforms in the totally split case, Compos. Math., Volume 146 (2010) no. 3, pp. 541-560 | DOI | MR | Zbl
[28] Classicality of overconvergent Hilbert eigenforms: case of quadratic residue degrees, Rend. Semin. Mat. Univ. Padova, Volume 132 (2014), pp. 133-229 | DOI | Numdam | MR | Zbl
Cited by Sources: