En utilisant l’approche probabiliste en géométrie arithmétique, nous donnons une nouvelle démonstration de l’inégalité d’indice de Hodge pour les -diviseurs adéliques, et nous proposons une nouvelle voie pour sa généralisation au cas de dimension supérieure.
By using the probabilistic approach in arithmetic geometry, one gives a new proof of the Hodge index inequality for adelic -divisors, and proposes a new way of generalizing it to higher dimensional case.
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jep.33
Classification : 14G40, 11G30
Mots clés : Inégalité d’indice de Hodge, géométrie d’Arakelov, diviseur adélique, corps d’Okounkov, système linéaire gradué, -filtration
@article{JEP_2016__3__231_0, author = {Chen, Huayi}, title = {In\'egalit\'e d{\textquoteright}indice de {Hodge} en g\'eom\'etrie et arithm\'etique~: une approche probabiliste}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques}, pages = {231--262}, publisher = {ole polytechnique}, volume = {3}, year = {2016}, doi = {10.5802/jep.33}, zbl = {06670707}, mrnumber = {3522823}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/jep.33/} }
TY - JOUR AU - Chen, Huayi TI - Inégalité d’indice de Hodge en géométrie et arithmétique : une approche probabiliste JO - Journal de l’École polytechnique — Mathématiques PY - 2016 DA - 2016/// SP - 231 EP - 262 VL - 3 PB - ole polytechnique UR - http://www.numdam.org/articles/10.5802/jep.33/ UR - https://zbmath.org/?q=an%3A06670707 UR - https://www.ams.org/mathscinet-getitem?mr=3522823 UR - https://doi.org/10.5802/jep.33 DO - 10.5802/jep.33 LA - fr ID - JEP_2016__3__231_0 ER -
Chen, Huayi. Inégalité d’indice de Hodge en géométrie et arithmétique : une approche probabiliste. Journal de l’École polytechnique — Mathématiques, Tome 3 (2016), pp. 231-262. doi : 10.5802/jep.33. http://www.numdam.org/articles/10.5802/jep.33/
[1] Probabilité, Collection Enseignement Sup Mathématiques, 33, EDP Sciences, Les Ulis, 2007, v+241 pages | Zbl 1251.60002
[2] Spectral theory and analytic geometry over non-Archimedean fields, Math. Surveys and Monographs, 33, American Mathematical Society, Providence, R.I., 1990, x+169 pages | MR 1070709 | Zbl 0715.14013
[3] Reverse Brunn-Minkowski and reverse entropy power inequalities for convex measures, J. Functional Analysis, Volume 262 (2012) no. 7, pp. 3309-3339 | Article | MR 2885954 | Zbl 1246.52012
[4] Potential theory and Lefschetz theorems for arithmetic surfaces, Ann. Sci. École Norm. Sup. (4), Volume 32 (1999) no. 2, pp. 241-312 | Article | Numdam | MR 1681810 | Zbl 0931.14014
[5] Okounkov bodies of filtered linear series, Compositio Math., Volume 147 (2011) no. 4, pp. 1205-1229 | Article | MR 2822867 | Zbl 1231.14020
[6] Arithmetic geometry of toric varieties. Metrics, measures and heights, Astérisque, 360, Société Mathématique de France, Paris, 2014, vi+222 pages | Zbl 1311.14050
[7] Arithmetic Fujita approximation, Ann. Sci. École Norm. Sup. (4), Volume 43 (2010) no. 4, pp. 555-578 | Article | Numdam | MR 2722508 | Zbl 1202.14024
[8] Géométrie d’Arakelov : théorèmes de limite et comptage des points rationnels (2011) (Mémoire d’habilitation à diriger des recherches)
[9] Majorations explicites des fonctions de Hilbert-Samuel géométrique et arithmétique, Math. Z., Volume 279 (2015) no. 1-2, pp. 99-137 | Article | Zbl 1339.14019
[10] On the maximum entropy of the sum of two dependent random variables, IEEE Trans. Information Theory, Volume 40 (1994) no. 4, pp. 1244-1246 | Article | MR 1301429 | Zbl 0811.94016
[11] Asymptotic multiplicities of graded families of ideals and linear series, Advances in Math., Volume 264 (2014), pp. 55-113 | Article | MR 3250280 | Zbl 1350.13032
[12] Probabilités et potentiel, Hermann, Paris, 1975, x+291 pages (Chap. I à IV)
[13] Espaces analytiques -adiques au sens de Berkovich, Séminaire Bourbaki. Vol. 2005/06 (Astérisque), Volume 311, Société Mathématique de France, Paris, 2007, pp. 137-176 (Exp. No. 958) | Numdam | Zbl 1197.14020
[14] The geometry of syzygies, Graduate Texts in Math., 229, Springer-Verlag, New York, 2005, xvi+243 pages | MR 2103875
[15] Calculus on arithmetic surfaces, Ann. of Math. (2), Volume 119 (1984) no. 2, pp. 387-424 | Article | MR 740897 | Zbl 0559.14005
[16] Approximating Zariski decomposition of big line bundles, Kodai Math. J., Volume 17 (1994) no. 1, pp. 1-3 | Article | MR 1262949 | Zbl 0814.14006
[17] Geometric methods and applications, Texts in Appl. Math., 38, Springer, New York, 2011, xxviii+680 pages | MR 2663906
[18] Pentes de fibrés vectoriels adéliques sur un corps global, Rend. Sem. Mat. Univ. Padova, Volume 119 (2008), pp. 21-95 | Article | Zbl 1206.14047
[19] On the number of lattice points in convex symmetric bodies and their duals, Israel J. Math., Volume 74 (1991) no. 2-3, pp. 347-357 | Article | MR 1135244 | Zbl 0752.52008
[20] Heights and Arakelov’s intersection theory, Amer. J. Math., Volume 107 (1985) no. 1, pp. 23-38 | Article | MR 778087 | Zbl 0593.14004
[21] Boundedness of the successive minima on arithmetic varieties, J. Algebraic Geom., Volume 22 (2013) no. 2, pp. 249-302 | MR 3019450 | Zbl 1273.14048
[22] Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory, Ann. of Math. (2), Volume 176 (2012) no. 2, pp. 925-978 | Article | MR 2950767 | Zbl 1270.14022
[23] Some remarks on the arithmetic Hodge index conjecture, Compositio Math., Volume 99 (1995) no. 2, pp. 109-128 | Numdam | MR 1351832 | Zbl 0845.14006
[24] Positivity in algebraic geometry. I, Ergeb. Math. Grenzgeb. (3), 48, Springer-Verlag, Berlin, 2004, xviii+387 pages | MR 2095471
[25] Convex bodies associated to linear series, Ann. Sci. École Norm. Sup. (4), Volume 42 (2009) no. 5, pp. 783-835 | Article | Numdam | MR 2571958 | Zbl 1182.14004
[26] Riemann-Roch type inequalities for nef and big divisors, Amer. J. Math., Volume 111 (1989) no. 3, pp. 457-487 | Article | MR 1002009 | Zbl 0691.14005
[27] Hodge index theorem for arithmetic cycles of codimension one, Math. Res. Lett., Volume 3 (1996) no. 2, pp. 173-183 | Article | MR 1386838 | Zbl 0873.14005
[28] Adelic divisors on arithmetic varieties, Mem. Amer. Math. Soc., 242, no. 1144, American Mathematical Society, Providence, R.I., 2016 | Zbl 1388.14076
[29] Brunn-Minkowski inequality for multiplicities, Invent. Math., Volume 125 (1996) no. 3, pp. 405-411 | MR 1400312 | Zbl 0893.52004
[30] Convex bodies associated with a given convex body, J. London Math. Soc. (2), Volume 33 (1958), pp. 270-281 | Article | MR 101508 | Zbl 0083.38402
[31] An absolute Siegel’s lemma, J. reine angew. Math., Volume 476 (1996), pp. 1-26 | MR 1401695 | Zbl 0860.11036
[32] A mathematical theory of communication, AT&T Bell Labs. Tech. J., Volume 27 (1948), p. 379-423, 623–656 | MR 26286 | Zbl 1154.94303
[33] Some inequalities satisfied by the quantities of information of Fisher and Shannon, Inform. and Control, Volume 2 (1959), pp. 101-112 | Article | MR 109101 | Zbl 0085.34701
[34] Fujita’s approximation theorem in positive characteristics, J. Math. Kyoto Univ., Volume 47 (2007) no. 1, pp. 179-202 | Article | MR 2359108 | Zbl 1136.14004
[35] An adelic Minkowski-Hlawka theorem and an application to Siegel’s lemma, J. reine angew. Math., Volume 475 (1996), pp. 167-185 | MR 1396731 | Zbl 0858.11034
[36] Lectures on measure theory, Lect. series Chinese Acad. Sci., Science Press, Beijing, 2004, ix+289 pages
[37] On volumes of arithmetic line bundles, Compositio Math., Volume 145 (2009) no. 6, pp. 1447-1464 | Article | MR 2575090 | Zbl 1197.14023
[38] Algebraic dynamics, canonical heights and Arakelov geometry, Fifth International Congress of Chinese Mathematicians (AMS/IP Stud. Adv. Math.), Volume 51, 2e partie, American Mathematical Society, Providence, R.I., 2012, pp. 893-929 | Zbl 1247.14026
[39] The arithmetic Hodge index theorem for adelic line bundles I : number fields, Math. Ann. (2016) (online, arXiv :1304.3538)
[40] Positive line bundles on arithmetic varieties, J. Amer. Math. Soc., Volume 8 (1995) no. 1, pp. 187-221 | Article | MR 1254133 | Zbl 0861.14018
Cité par Sources :