We study orbital functions associated to Kleinian groups through the heat kernel approach developed in [Bou22].
Nous étudions les fonctions orbitales des groupes kleiniens par l’approche du noyau de la chaleur initiée dans [Bou22].
Accepted:
Published online:
Keywords: Kleinian groups, heat kernels, orbital functions
Mot clés : Groupes kleiniens, noyaux de la chaleur, fonctions orbitales
@article{JEP_2022__9__1069_0, author = {Boulanger, Adrien}, title = {Orbital functions and heat kernels of {Kleinian} groups}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique - Math\'ematiques}, pages = {1069--1100}, publisher = {Ecole polytechnique}, volume = {9}, year = {2022}, doi = {10.5802/jep.200}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jep.200/} }
TY - JOUR AU - Boulanger, Adrien TI - Orbital functions and heat kernels of Kleinian groups JO - Journal de l’École polytechnique - Mathématiques PY - 2022 SP - 1069 EP - 1100 VL - 9 PB - Ecole polytechnique UR - http://www.numdam.org/articles/10.5802/jep.200/ DO - 10.5802/jep.200 LA - en ID - JEP_2022__9__1069_0 ER -
Boulanger, Adrien. Orbital functions and heat kernels of Kleinian groups. Journal de l’École polytechnique - Mathématiques, Volume 9 (2022), pp. 1069-1100. doi : 10.5802/jep.200. http://www.numdam.org/articles/10.5802/jep.200/
[BCM12] The classification of Kleinian surface groups, II: The ending lamination conjecture, Ann. of Math. (2), Volume 176 (2012) no. 1, pp. 1-149 | DOI | MR | Zbl
[BFZ02] Rigidité, groupe fondamental et dynamique, Panoramas & Synthèses, 13, Société Mathématique de France, Paris, 2002
[BJ97a] Hausdorff dimension and Kleinian groups, Acta Math., Volume 179 (1997) no. 1, pp. 1-39 | DOI | MR | Zbl
[BJ97b] The law of the iterated logarithm for Kleinian groups, Lipa’s legacy (New York, 1995) (Contemp. Math.), Volume 211, American Mathematical Society, Providence, RI, 1997, pp. 17-50 | DOI | MR | Zbl
[Bou18] Quelques exemples de systèmes dynamiques: comptage en mesure infinie, enlacement sur le tore et échanges d’intervalles affines, Ph. D. Thesis, Sorbonne Université (2018) | TEL
[Bou22] A stochastic approach to counting problems, Ann. Sci. École Norm. Sup. (4), Volume 55 (2022) no. 1, pp. 225-259 | DOI | MR | Zbl
[Can93] Ends of hyperbolic -manifolds, J. Amer. Math. Soc., Volume 6 (1993) no. 1, pp. 1-35 | DOI | MR | Zbl
[Can08] Marden’s tameness conjecture: history and applications, Geometry, analysis and topology of discrete groups (Adv. Lect. Math. (ALM)), Volume 6, Int. Press, Somerville, MA, 2008, pp. 137-162 | MR | Zbl
[CG06] Shrinkwrapping and the taming of hyperbolic 3-manifolds, J. Amer. Math. Soc., Volume 19 (2006) no. 2, pp. 385-446 | DOI | MR | Zbl
[Cha84] Eigenvalues in Riemannian geometry, Pure and applied math., 115, Academic Press, 1984
[Del42] Sur le gitter fuchsien, C. R. Acad. Sci. Paris, Volume 214 (1942), pp. 147-179 | MR | Zbl
[Dod83] Maximum principle for parabolic inequalities and the heat flow on open manifolds, Indiana Univ. Math. J., Volume 32 (1983) no. 5, pp. 703-716 | DOI | MR | Zbl
[EM93] Mixing, counting, and equidistribution in Lie groups, Duke Math. J., Volume 71 (1993) no. 1, pp. 181-209 | DOI | MR | Zbl
[Eps85] The spectral theory of geometrically periodic hyperbolic -manifolds, Mem. Amer. Math. Soc., 58, no. 335, American Mathematical Society, Providence, RI, 1985 | DOI | MR
[Eps87] Asymptotics for closed geodesics in a homology class, the finite volume case, Duke Math. J., Volume 55 (1987) no. 4, pp. 717-757 | DOI | MR | Zbl
[Eps89] Positive harmonic functions on abelian covers, J. Funct. Anal., Volume 82 (1989) no. 2, pp. 303-315 | DOI | MR | Zbl
[GN98] The heat kernel on hyperbolic space, Bull. London Math. Soc., Volume 30 (1998) no. 6, pp. 643-650 | DOI | MR | Zbl
[Gri09] Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Math., 47, American Mathematical Society, Providence, RI, 2009
[Hub56] Über eine neue Klasse automorpher Funktionen und ein Gitterpunktproblem in der hyperbolischen Ebene. I, Comment. Math. Helv., Volume 30 (1956), pp. 20-62 | DOI | Zbl
[LP82] The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces, J. Funct. Anal., Volume 46 (1982) no. 3, pp. 280-350 | DOI | MR | Zbl
[LST81] Geometry Symposium, Utrecht 1980, Lect. Notes in Math., 894 (1981) | DOI
[Mar69] Certain applications of ergodic theory to the investigation of manifolds of negative curvature, Funkcional. Anal. i Priložen., Volume 3 (1969) no. 4, pp. 89-90 | MR
[McM96] Renormalization and 3-manifolds which fiber over the circle, Annals of Math. Studies, 142, Princeton University Press, Princeton, NJ, 1996 | DOI
[Min02] End Invariants and the classification of hyperbolic 3-manifolds, Current Developments in Math. (2002), pp. 111-141 https://projecteuclid.org:443/euclid.cdm/1088530401
[Ota01] The hyperbolization theorem for fibered 3-manifolds, SMF/AMS Texts and Monographs, 7, American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, 2001 Translated from the 1996 French original (Astérisque, vol. 235) | MR
[Pat75] A lattice-point problem in hyperbolic space, Mathematika, Volume 22 (1975) no. 1, pp. 81-88 | DOI | MR | Zbl
[Pat76] The limit set of a Fuchsian group, Acta Math., Volume 136 (1976) no. 3-4, pp. 241-273 | DOI | MR | Zbl
[Pat88] On a lattice-point problem in hyperbolic space and related questions in spectral theory, Ark. Mat., Volume 26 (1988) no. 1, pp. 167-172 | DOI | MR | Zbl
[Rob02] Sur la fonction orbitale des groupes discrets en courbure négative, Ann. Inst. Fourier (Grenoble), Volume 52 (2002) no. 1, pp. 145-151 | DOI | Numdam | MR | Zbl
[Rob03] Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. France (N.S.), 95, Société Mathématique de France, Paris, 2003 | Numdam | MR
[Sel56] Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.), Volume 20 (1956), pp. 47-87 | MR | Zbl
[Sel60] On discontinuous groups in higher-dimensional symmetric spaces, Contributions to function theory (internat. Colloq. Function Theory, Bombay, 1960), Tata Institute of Fundamental Research, Bombay, 1960, pp. 147-164 | Zbl
[Sul79] The density at infinity of a discrete group of hyperbolic motions, Publ. Math. Inst. Hautes Études Sci., Volume 50 (1979), pp. 171-202 | DOI | Numdam | Zbl
[Sul84] Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math., Volume 153 (1984) no. 3-4, pp. 259-277 | DOI | MR | Zbl
[Sul87] Related aspects of positivity in Riemannian geometry, J. Differential Geom., Volume 25 (1987) no. 3, pp. 327-351 http://projecteuclid.org/euclid.jdg/1214440979 | MR | Zbl
Cited by Sources: