Measure equivalence classification of transvection-free right-angled Artin groups
[Classification des groupes d’Artin à angles droits sans transvections pour l’équivalence mesurée]
Journal de l’École polytechnique — Mathématiques, Tome 9 (2022), pp. 1021-1067.

Nous démontrons que si deux groupes d’Artin à angles droits sans transvections sont mesurablement équivalents, alors ils ont des graphes d’extension isomorphes. En conséquence, deux groupes d’Artin à angles droits ayant des groupes d’automorphismes extérieurs finis sont mesurablement équivalents si et seulement s’ils sont isomorphes. Ceci coïncide avec la classification pour la quasi-isométrie. Par contre, contrairement au cas de la quasi-isométrie, un groupe d’Artin à angles droits ne peut jamais être super-rigide pour l’équivalence mesurée, pour deux raisons. D’abord, un groupe d’Artin à angles droits G est toujours mesurablement équivalent à tout produit graphé de groupes moyennables infinis dénombrables sur le même graphe sous-jacent. Ensuite, lorsque G est non abélien, le groupe d’automorphismes du revêtement universel du complexe de Salvetti de G contient toujours des réseaux (non uniformes) qui ne sont pas de type fini.

We prove that if two transvection-free right-angled Artin groups are measure equivalent, then they have isomorphic extension graphs. As a consequence, two right-angled Artin groups with finite outer automorphism groups are measure equivalent if and only if they are isomorphic. This matches the quasi-isometry classification. However, in contrast with the quasi-isometry question, we observe that no right-angled Artin group is superrigid for measure equivalence in the strongest possible sense, for two reasons. First, a right-angled Artin group G is always measure equivalent to any graph product of infinite countable amenable groups over the same defining graph. Second, when G is nonabelian, the automorphism group of the universal cover of the Salvetti complex of G always contains infinitely generated (non-uniform) lattices.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.199
Classification : 20F36, 20F65, 37A20, 46L36
Keywords: Right-angled Artin groups, measure equivalence
Mot clés : Groupes d’Artin à angles droits, équivalence mesurée
Horbez, Camille 1 ; Huang, Jingyin 2

1 Université Paris-Saclay, CNRS, Laboratoire de mathématiques d’Orsay 91405, Orsay, France
2 Department of Mathematics, The Ohio State University 100 Math Tower, 231 W 18th Ave, Columbus, OH 43210, USA
@article{JEP_2022__9__1021_0,
     author = {Horbez, Camille and Huang, Jingyin},
     title = {Measure equivalence classification of transvection-free right-angled {Artin} groups},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1021--1067},
     publisher = {Ecole polytechnique},
     volume = {9},
     year = {2022},
     doi = {10.5802/jep.199},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jep.199/}
}
TY  - JOUR
AU  - Horbez, Camille
AU  - Huang, Jingyin
TI  - Measure equivalence classification of transvection-free right-angled Artin groups
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2022
SP  - 1021
EP  - 1067
VL  - 9
PB  - Ecole polytechnique
UR  - http://www.numdam.org/articles/10.5802/jep.199/
DO  - 10.5802/jep.199
LA  - en
ID  - JEP_2022__9__1021_0
ER  - 
%0 Journal Article
%A Horbez, Camille
%A Huang, Jingyin
%T Measure equivalence classification of transvection-free right-angled Artin groups
%J Journal de l’École polytechnique — Mathématiques
%D 2022
%P 1021-1067
%V 9
%I Ecole polytechnique
%U http://www.numdam.org/articles/10.5802/jep.199/
%R 10.5802/jep.199
%G en
%F JEP_2022__9__1021_0
Horbez, Camille; Huang, Jingyin. Measure equivalence classification of transvection-free right-angled Artin groups. Journal de l’École polytechnique — Mathématiques, Tome 9 (2022), pp. 1021-1067. doi : 10.5802/jep.199. http://www.numdam.org/articles/10.5802/jep.199/

[Ada94] Adams, S. Indecomposability of equivalence relations generated by word hyperbolic groups, Topology, Volume 33 (1994) no. 4, pp. 785-798 | DOI | MR | Zbl

[AG12] Alvarez, A.; Gaboriau, D. Free products, orbit equivalence and measure equivalence rigidity, Groups Geom. Dyn., Volume 6 (2012) no. 1, pp. 53-82 | DOI | MR | Zbl

[AM15] Antolín, Y.; Minasyan, A. Tits alternatives for graph products, J. reine angew. Math., Volume 2015 (2015) no. 704, pp. 55-83 | DOI | MR | Zbl

[Aus16] Austin, T. Integrable measure equivalence for groups of polynomial growth, Groups Geom. Dyn., Volume 10 (2016) no. 1, pp. 117-154 (With Appendix B by Lewis Bowen) | DOI | MR | Zbl

[BC12] Behrstock, J. A.; Charney, R. Divergence and quasimorphisms of right-angled Artin groups, Math. Ann., Volume 352 (2012) no. 2, pp. 339-356 | DOI | MR | Zbl

[BCG + 09] Brodzki, J.; Campbell, S. J.; Guentner, E.; Niblo, G. A.; Wright, N.J. Property A and CAT(0) cube complexes, J. Funct. Anal., Volume 256 (2009) no. 5, pp. 1408-1431 | DOI | MR | Zbl

[BE04] Bartholdi, L.; Erschler, A. Groups of given intermediate word growth, Ann. Inst. Fourier (Grenoble), Volume 64 (2004) no. 5, pp. 2003-2036 | DOI | MR

[BFS13] Bader, U.; Furman, A.; Sauer, R. Integrable measure equivalence and rigidity of hyperbolic lattices, Invent. Math., Volume 194 (2013) no. 2, pp. 313-379 | DOI | MR | Zbl

[BFS20] Bader, U.; Furman, A.; Sauer, R. Lattice envelopes, Duke Math. J., Volume 169 (2020) no. 2, pp. 213-278 | DOI | MR | Zbl

[BH99] Bridson, M.; Haefliger, A. Metric spaces of non-positive curvature, Grundlehren Math. Wiss., 319, Springer-Verlag, Berlin, 1999 | DOI

[BJN10] Behrstock, J. A.; Januszkiewicz, T.; Neumann, W. D. Quasi-isometric classification of some high dimensional right-angled Artin groups, Groups Geom. Dyn., Volume 4 (2010) no. 4, pp. 681-692 | DOI | MR | Zbl

[BKS08] Bestvina, M.; Kleiner, B.; Sageev, M. The asymptotic geometry of right-angled Artin groups. I., Geom. Topol., Volume 12 (2008) no. 3, pp. 1653-1699 | DOI | MR | Zbl

[BL01] Bass, H.; Lubotzky, A. Tree lattices, Progress in Math., 176, Birkhäuser Boston, Inc., Boston, MA, 2001 | DOI

[BN08] Behrstock, J. A.; Neumann, W. D. Quasi-isometric classification of graph manifold groups, Duke Math. J., Volume 141 (2008) no. 2, pp. 217-240 | DOI | MR | Zbl

[CCV07] Charney, R.; Crisp, J.; Vogtmann, K. Automorphisms of 2–dimensional right-angled Artin groups, Geom. Topol., Volume 11 (2007) no. 4, pp. 2227-2264 | DOI | MR | Zbl

[CdlH16] Cornulier, Y.; de la Harpe, P. Metric geometry of locally compact groups, EMS Tracts in Math., 25, European Mathematical Society, Zürich, 2016 | DOI

[CFI16] Chatterji, I.; Fernós, T.; Iozzi, A. The median class and superrigidity of actions on CAT(0) cube complexes, J. Topology, Volume 9 (2016) no. 2, pp. 349-400 | DOI | MR | Zbl

[Cha07] Charney, R. An introduction to right-angled Artin groups, Geom. Dedicata, Volume 125 (2007) no. 1, pp. 141-158 | DOI | MR | Zbl

[CK15] Chifan, I.; Kida, Y. OE and W * rigidity results for actions by surface braid groups, Proc. London Math. Soc. (3), Volume 111 (2015) no. 6, pp. 1431-1470 | DOI | Zbl

[CKE21] Chifan, I.; Kunnawalkam Elayavalli, S. Cartan subalgebras in von Neumann algebras associated to graph product groups, 2021 | arXiv

[DKR07] Duncan, A. J.; Kazachkov, I. V.; Remeslennikov, V. N. Parabolic and quasiparabolic subgroups of free partially commutative groups, J. Algebra, Volume 318 (2007) no. 2, pp. 918-932 | DOI | MR | Zbl

[DL03] Davis, M. W.; Leary, I.J. The 2 -cohomology of Artin groups, J. London Math. Soc. (2), Volume 68 (2003) no. 2, pp. 493-510 | DOI | MR

[Dro87] Droms, C. Isomorphisms of graph groups, Proc. Amer. Math. Soc., Volume 100 (1987) no. 3, pp. 407-408 | DOI | MR | Zbl

[Duc18] Duchesne, B. Groups acting on spaces of non-positive curvature, Handbook of group actions. Vol. III (Adv. Lect. Math.), Volume 40, International Press, Sommerville, MA, 2018, pp. 101-141 | MR | Zbl

[Dye59] Dye, H.A. On groups of measure preserving transformation. I, Amer. J. Math., Volume 81 (1959), pp. 119-159 | DOI | MR

[Dye63] Dye, H.A. On groups of measure preserving transformations. II, Amer. J. Math., Volume 85 (1963), pp. 551-576 | DOI | MR

[Fer18] Fernós, T. The Furstenberg-Poisson boundary and CAT(0) cube complexes, Ergodic Theory Dynam. Systems, Volume 38 (2018) no. 6, pp. 2180-2223 | DOI | MR | Zbl

[FLM18] Fernós, T.; Lécureux, J.; Mathéus, F. Random walks and boundaries of CAT(0) cubical complexes, Comment. Math. Helv., Volume 93 (2018) no. 2, pp. 291-333 | DOI | MR | Zbl

[FM77] Feldman, J.; Moore, C.C. Ergodic equivalence relations, cohomology, and von Neumann algebras, Trans. Amer. Math. Soc., Volume 234 (1977) no. 2, pp. 325-359 | DOI | MR

[FSZ89] Feldman, J.; Sutherland, C. E.; Zimmer, R. J. Subrelations of ergodic equivalence relations, Ergodic Theory Dynam. Systems, Volume 9 (1989) no. 2, pp. 239-269 | DOI | MR | Zbl

[Fur99a] Furman, A. Gromov’s measure equivalence and rigidity of higher-rank lattices, Ann. of Math. (2), Volume 150 (1999), pp. 1059-1081 | DOI | MR | Zbl

[Fur99b] Furman, A. Orbit equivalence rigidity, Ann. of Math. (2), Volume 150 (1999) no. 3, pp. 1083-1108 | DOI | MR | Zbl

[Fur11] Furman, A. A survey of measured group theory, Geometry, rigidity, and group actions (Chicago Lectures in Math.), Univ. Chicago Press, Chicago, IL, 2011, pp. 296-374 | MR | Zbl

[Gab00] Gaboriau, D. Coût des relations d’équivalence et des groupes, Invent. Math., Volume 139 (2000) no. 1, pp. 41-98 | DOI | Zbl

[Gab02a] Gaboriau, D. Invariants 2 de relations d’équivalence et de groupes, Publ. Math. Inst. Hautes Études Sci., Volume 95 (2002), pp. 93-150 | DOI

[Gab02b] Gaboriau, D. On orbit equivalence of measure preserving actions, Rigidity in dynamics and geometry (Cambridge, 2000), Springer, Berlin, 2002, pp. 167-186 | DOI | MR | Zbl

[Gab05] Gaboriau, D. Examples of groups that are measure equivalent to the free group, Ergodic Theory Dynam. Systems, Volume 25 (2005) no. 6, pp. 1809-1827 | DOI | MR | Zbl

[Gab10] Gaboriau, D. Orbit equivalence and measured group theory, Proceedings of the ICM (Hyderabad, 2010), Vol. III, Hindustan Book Agency, New Dehli, 2010, pp. 1501-1527

[Gen20] Genevois, A. Contracting isometries of CAT(0) cube complexes and acylindrical hyperbolicity of diagram groups, Algebraic Geom. Topol., Volume 20 (2020) no. 1, pp. 49-134 | DOI | MR | Zbl

[GH21] Guirardel, V.; Horbez, C. Measure equivalence rigidity of Out(F N ), 2021 | arXiv

[GHL20] Guirardel, V.; Horbez, C.; Lécureux, J. Cocycle superrigidity from higher-rank lattices to Out(F N ), 2020 | arXiv

[God03] Godelle, E. Parabolic subgroups of Artin groups of type FC, Pacific J. Math., Volume 208 (2003) no. 3, pp. 243-254 | DOI | MR | Zbl

[Gre90] Green, E. R. Graph products of groups, Ph. D. Thesis, University of Leeds (1990)

[Gro93] Gromov, M. Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (London Math. Soc. Lecture Note Ser.), Volume 182, Cambridge University Press, Cambridge, 1993, pp. 1-295 | MR

[Hag08] Haglund, F. Finite index subgroups of graph products, Geom. Dedicata, Volume 135 (2008) no. 1, p. 167 | DOI | MR | Zbl

[HH20] Horbez, C.; Huang, J. Boundary amenability and measure equivalence rigidity among two-dimensional Artin groups of hyperbolic type, 2020 | arXiv

[HHL20] Horbez, C.; Huang, J.; Lécureux, J. Proper proximality in non-positive curvature, 2020 | arXiv

[HM95] Hermiller, S.; Meier, J. Algorithms and geometry for graph products of groups, J. Algebra, Volume 171 (1995) no. 1, pp. 230-257 | DOI | MR | Zbl

[HR15] Houdayer, C.; Raum, S. Baumslag-Solitar groups, relative profinite completions and measure equivalence rigidity, J. Topology, Volume 8 (2015) no. 1, pp. 295-313 | DOI | MR | Zbl

[HS20] Hagen, M. F.; Susse, T. On hierarchical hyperbolicity of cubical groups, Israel J. Math., Volume 236 (2020) no. 1, pp. 45-89 | DOI | MR | Zbl

[Hua16] Huang, J. Quasi-isometry classification of right-angled Artin groups II: several infinite out cases, 2016 | arXiv

[Hua17a] Huang, J. Quasi-isometric classification of right-angled Artin groups I: the finite out case, Geom. Topol., Volume 21 (2017) no. 6, pp. 3467-3537 | DOI | MR | Zbl

[Hua17b] Huang, J. Top-dimensional quasiflats in CAT(0) cube complexes, Geom. Topol., Volume 21 (2017) no. 4, pp. 2281-2352 | DOI | MR | Zbl

[Hua18] Huang, J. Commensurability of groups quasi-isometric to RAAGs, Invent. Math., Volume 213 (2018) no. 3, pp. 1179-1247 | DOI | MR | Zbl

[HW08] Haglund, F.; Wise, D. T. Special cube complexes, Geom. Funct. Anal., Volume 17 (2008) no. 5, pp. 1551-1620 | DOI | MR | Zbl

[Kec95] Kechris, A.S. Classical descriptive set theory, Graduate Texts in Math., 156, Springer-Verlag, New York, 1995 | DOI

[KH18] Kleiner, B.; Huang, J. Groups quasi-isometric to right-angled Artin groups, Duke Math. J., Volume 167 (2018) no. 3, pp. 537-602 | MR | Zbl

[Kid08] Kida, Y. The mapping class group from the viewpoint of measure equivalence theory, Mem. Amer. Math. Soc., 196, no. 916, American Mathematical Society, Providence, RI, 2008

[Kid09] Kida, Y. Introduction to measurable rigidity of mapping class groups, Handbook of Teichmüller theory, II (IRMA Lect. Math. Theor. Phys.), Volume 13, European Mathematical Society, Zürich, 2009, pp. 297-367 | DOI | MR | Zbl

[Kid10] Kida, Y. Measure equivalence rigidity of the mapping class group, Ann. of Math. (2), Volume 171 (2010) no. 3, pp. 1851-1901 | DOI | MR | Zbl

[Kid11] Kida, Y. Rigidity of amalgamated free products in measure equivalence, J. Topology, Volume 4 (2011) no. 3, pp. 687-735 | DOI | MR | Zbl

[Kid14] Kida, Y. Invariants of orbit equivalence relations and Baumslag-Solitar groups, Tôhoku Math. J. (2), Volume 66 (2014) no. 2, pp. 205-258 | MR | Zbl

[KK13] Kim, S.-h.; Koberda, T. Embedability between right-angled Artin groups, Geom. Topol., Volume 17 (2013) no. 1, pp. 493-530 | DOI | MR

[KK14] Kim, S.-h.; Koberda, T. The geometry of the curve graph of a right-angled Artin group, Internat. J. Algebra Comput., Volume 24 (2014) no. 2, pp. 121-169 | DOI | MR | Zbl

[Lau95] Laurence, M. R. A generating set for the automorphism group of a graph group, J. London Math. Soc. (2), Volume 52 (1995) no. 2, pp. 318-334 | DOI | MR | Zbl

[Mar20] Margolis, A. Quasi-isometry classification of right-angled Artin groups that split over cyclic subgroups, Groups Geom. Dyn., Volume 14 (2020) no. 4, pp. 1351-1417

[Min12] Minasyan, A. Hereditary conjugacy separability of right-angled Artin groups and its applications, Groups Geom. Dyn., Volume 6 (2012) no. 2, pp. 335-388 | DOI | MR | Zbl

[MS06] Monod, N.; Shalom, Y. Orbit equivalence rigidity and bounded cohomology, Ann. of Math. (2), Volume 164 (2006) no. 3, pp. 825-878 | DOI | MR | Zbl

[NS13] Nevo, A.; Sageev, M. The Poisson boundary of CAT(0) cube complex groups, Groups Geom. Dyn., Volume 7 (2013) no. 3, pp. 653-695 | DOI | MR | Zbl

[OP10a] Ozawa, N.; Popa, S. On a class of II 1 factors with at most one Cartan subalgebra, Ann. of Math. (2), Volume 172 (2010) no. 1, pp. 713-749 | DOI | MR

[OP10b] Ozawa, N.; Popa, S. On a class of II 1 factors with at most one Cartan subalgebra, II, Amer. J. Math., Volume 132 (2010) no. 3, pp. 841-866 | DOI | MR | Zbl

[OW80] Ornstein, D. S.; Weiss, B. Ergodic theory of amenable group actions. I. The Rohlin lemma, Bull. Amer. Math. Soc. (N.S.), Volume 2 (1980) no. 1, pp. 161-164 | DOI | MR | Zbl

[PV10] Popa, S.; Vaes, S. Group measure space decomposition of II 1 factors and W * -superrigidity, Invent. Math., Volume 182 (2010) no. 2, pp. 371-417 | DOI | MR | Zbl

[PV14] Popa, S.; Vaes, S. Unique Cartan decomposition for II 1 factors arising from arbitrary actions of free groups, Acta Math., Volume 212 (2014) no. 1, pp. 141-198 | DOI | Zbl

[Rol98] Roller, M. A. Poc sets, median algebras and group actions. An extended study of Dunwoody’s construction and Sageev’s theorem (1998) (preprint)

[Sag12] Sageev, M. CAT(0) cube complexes and groups, Geometric group theory (IAS/Park City Math. Ser.), Volume 21, American Mathematical Society, Providence, RI, 2012, pp. 7-54 | DOI | Zbl

[Ser71] Serre, J.-P. Cohomologie des groupes discrets, Séminaire Bourbaki (Lect. Notes in Math.), Volume 244, Springer, Berlin, 1971, pp. 337-350 | Numdam | MR | Zbl

[Ser89] Servatius, H. Automorphisms of graph groups, J. Algebra, Volume 126 (1989) no. 1, pp. 34-60 | DOI | MR | Zbl

[Sha05] Shalom, Y. Measurable group theory, Proceedings ECM, European Mathematical Society, Zürich, 2005, pp. 391-423 | MR | Zbl

[Why99] Whyte, K. Amenability, bi-Lipschitz equivalence, and the von Neumann conjecture, Duke Math. J., Volume 99 (1999) no. 1, pp. 93-112 | DOI | MR | Zbl

[Zim80] Zimmer, R. J. Strong rigidity for ergodic actions of semisimple groups, Ann. of Math. (2), Volume 112 (1980) no. 3, pp. 511-529 | DOI | MR | Zbl

[Zim91] Zimmer, R. J. Groups generating transversals to semisimple Lie group actions, Israel J. Math., Volume 73 (1991) no. 2, pp. 151-159 | DOI | MR | Zbl

Cité par Sources :